skip to content

Classifying 2-blocks with an elementary abelian defect group

Presented by: 
Cesare Giulio Ardito
Thursday 9th January 2020 - 17:00 to 17:30
INI Seminar Room 1

Donovan's conjecture predicts that given a $p$-group $D$ there are only finitely many Morita equivalence classes of blocks of group algebras of finite groups with defect group $D$. While the conjecture is still open for a generic $p$-group $D$, it has been proven in 2014 by Eaton, Kessar, Külshammer and Sambale when D is an elementary abelian 2-group, and in 2018 by Eaton, Eisele and Livesey when D is any abelian 2-group. The proof, however, does not describe these equivalence classes explicitly. A classification up to Morita equivalence over a complete discrete valuation ring $\mathcal{O}$ has been achieved when $p=2$ for abelian $D$ with rank $3$ or less, and for $D=(C_2)^4$.In my PhD thesis I have done $(C_2)^5$, and I have partial results on $(C_2)^6$. I will introduce the topic, give some definitions and then describe the process of classifying these blocks, with a focus on the process and the tools needed to produce a complete classification. All the obtained data is available on

The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
Presentation Material: 
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons