skip to content

Musing on implementing semigroup representation theory and software integration

Presented by: 
Nicolas Thiery
Tuesday 28th January 2020 - 09:10 to 10:00
INI Seminar Room 1
Extending representation theory from finite groups to finite semigroups brings interesting challenges, combinatorics, and applications. Almost a decade ago, I proposed an algorithm to compute the Cartan Matrix of a semigroup algebra -- a combinatorial invariant that contains information on how projective modules are built from simple modules. It boils down to computing with finite semigroups, characters of groups, and combinatorics. Despite this relative simplicity, and much to my embarrassment, a full production-grade implementation is only finally in reach.  

In this talk, I will report on ongoing joint work with my PhD student Balthazar Charles to implement this algorithm and adapt it to modular representations, and use this occasion to illustrate the evolution of our computational landscape toward an ecosystem of interoperable software, thanks to large scale collaborations.
The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons