skip to content

Isomorphism, derivations, and Lie representations

Presented by: 
Joshua Maglione
Tuesday 4th February 2020 - 11:00 to 12:00
INI Seminar Room 2
By bringing in tools from multilinear algebra, we introduce a general method to aid in the computation of isomorphism for groups. Of particular interest are nilpotent groups where the only classically known proper nontrivial characteristic subgroup is the derived subgroup. This family of groups poses the biggest challenge to all modern approaches. Through structural analysis of the biadditive commutator map, we leverage the representation theory of Lie algebras to prove efficiency for families of nilpotent groups. We report on joint work with Peter A. Brooksbank, Uriya First, and James B. Wilson.

The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons