skip to content
 

Jordan decomposition for the Alperin-McKay conjecture

Presented by: 
Lucas Ruhstorfer
Date: 
Tuesday 18th February 2020 - 11:00 to 12:00
Venue: 
INI Seminar Room 2
Abstract: 
In recent years, many of the famous global-local conjectures in the representation theory of finite groups have been reduced to the verification of certain stronger conditions on the characters of finite quasi-simple groups. It became apparent that checking these conditions requires a deep understanding of the action of group automorphisms on the characters of a finite simple group of Lie type.

On the other hand, the Morita equivalence by Bonnafé-Dat-Rouquier has become an indispensable tool to study the representation theory of groups of Lie type. In this talk, we will discuss the interplay of this Morita equivalence with group automorphisms. We will then show how this can be applied in the context of the Alperin-McKay conjecture.





The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons