MIXED TORIC RESIDUES AND CALABI-YAU COMPLETE INTERSECTIONS

VICTOR V. BATYREV AND EVGENY N. MATEROV

ABSTRACT. Using Cayley trick, we define the notions of mixed toric residues and mixed Hessians associated with r Laurent polynomials f_1, \ldots, f_r. We conjecture that the values of mixed toric residues on the mixed Hessians are determined by mixed volumes of the Newton polytopes of f_1, \ldots, f_r. Using mixed toric residues, we generalize our Toric Residue Mirror Conjecture to the case of Calabi-Yau complete intersections in Gorenstein toric Fano varieties obtained from nef-partitions of reflexive polytopes.

CONTENTS

1. Introduction 2
2. Toric residues 3
3. Cayley trick and mixed toric residues 7
4. Toric Residue Mirror Conjecture 11
5. Complete intersections in weighted projective spaces 14
6. Complete intersections in product of projective spaces 17
7. Computation of Yukawa $(d - r)$-point functions 20
References 27

Key words and phrases. residues, toric varieties, intersection numbers, mirror symmetry.
2000 Mathematics Subject Classification. Primary 14M25.
1. Introduction

This paper is the continuation of our previous work [BM1] where we proposed a toric mirror symmetry test using toric residues. The idea of this test has appeared in the paper of Morrison-Plesser [MP] who observed that the coefficients of some power series expansions of unnormalized Yukawa couplings for mirrors of Calabi-Yau hypersurfaces in toric varieties \mathbb{P} can be interpreted as generating functions for intersection numbers of divisors on some sequences of toric varieties \mathbb{P}_β parametrized by lattice points β in the Mori cone $K_{\text{eff}}(\mathbb{P})$ of \mathbb{P}. Due to results of Mavlyutov [Mav], it is known that the unnormalized Yukawa couplings can be computed using toric residues introduced by Cox [Cox]. In our paper [BM1], we formulated a general mathematical conjecture, so called Toric Residue Mirror Conjecture, which describes some power series expansions of the toric residues in terms of intersection numbers of divisors on a sequence of simplicial toric varieties \mathbb{P}_β (we call them Morrison-Plesser moduli spaces). This conjecture includes all examples of mirror symmetry for Calabi-Yau hypersurfaces in Gorenstein toric varieties associated with reflexive polytopes. Since the toric mirror symmetry construction exists also for Calabi-Yau complete intersection in Gorenstein toric Fano varieties [Bo, BB1], it is natural to try to extend our conjecture to this more general situation.

The case of Calabi-Yau complete intersections of r hypersurfaces

$$f_1(t) = \cdots = f_r(t) = 0, \quad r > 1,$$

defined by Laurent polynomials $f_1(t), \ldots, f_r(t) \in \mathbb{C}[t_1^{\pm1}, \ldots, t_d^{\pm1}]$ in d-dimensional toric varieties \mathbb{P} was not considered by Morrison and Plesser in [MP]. We remark that in this case one does not get a connection to the "quantum cohomology ring" [Bat] as in the hypersurface case. This difference is explained by the consideration of a nonreflexive $(d+r−1)$-dimensional polytope Δ, so called Cayley polytope, and its secondary polytope $\text{Sec}(\Delta)$. The Cayley polytope Δ appears from the Cayley trick which introduces r additional r variables t_{d+1}, \ldots, t_{d+r} and a new polynomial $F(t) := \sum_{j=1}^r t_{d+j}f_j(t)$. We consider the usual toric residue Res_F associated with F and define the k-mixed toric residue Res_F^k corresponding to a positive integral solution $k = (k_1, \ldots, k_r)$ of the equation $k_1 + \cdots + k_r = d+r$ as a k-th homogeneous component of Res_F. We expect that the k-mixed toric residues are similar to the usual toric residues. In particular, we introduce the notion of k-mixed Hessian H_F^k of Laurent polynomials f_1, \ldots, f_r and conjecture that the value of Res_F^k on H_F^k is exactly the mixed volume

$$V(\underbrace{\Delta_1, \ldots, \Delta_1}_{k_1-1}, \ldots, \underbrace{\Delta_r, \ldots, \Delta_r}_{k_r-1}),$$

where $\Delta_1, \ldots, \Delta_r$ are Newton polytopes of f_1, \ldots, f_r.
Our generalization of the Toric Residue Mirror Conjecture for Calabi-Yau complete intersections uses the notions of the nef-partition $\Delta = \Delta_1 + \cdots + \Delta_r$ of d-dimensional reflexive polytope Δ [Bo]. In this situation, one obtains a dual nef-partition $\nabla = \nabla_1 + \cdots + \nabla_r$ and two more reflexive polytopes:

$$\nabla^* = \text{conv}\{\Delta_1, \ldots, \Delta_r\}, \quad \Delta^* = \text{conv}\{\nabla_1, \ldots, \nabla_r\}.$$

It is important that special coherent triangulations of ∇^* define coherent triangulations of the Cayley polytope $\tilde{\Delta} := \Delta_1 \ast \cdots \ast \Delta_r$. Therefore the choice of such a triangulation T of ∇^* determines a vertex v_T of the secondary polytope $\text{Sec}(\tilde{\Delta})$ and a partial projective simplicial crepant desingularization $\mathbb{P} := \mathbb{P}_{\Sigma(T)}$ of the Gorenstein toric variety \mathbb{P}_{∇^*}. So one obtains a sequence of simplicial toric varieties \mathbb{P}_β associated with the lattice points β in the Mori cone $K_{\text{eff}}(\mathbb{P})$ of \mathbb{P}. We conjecture that the generating function of intersection numbers

$$I_P(a) = \sum_{\beta \in K_{\text{eff}}(\mathbb{P})} I(P, \beta) a^\beta$$

coincides with the power series expansion of the k-mixed toric residue

$$R_P(a) = \text{Res}_P^K(P(a, t))$$

at the vertex $v_T \in \text{Sec}(\tilde{\Delta})$. The precise formulation of this conjecture is given in Section 4.

In Sections 5, 6 we check our conjecture for nef-partitions corresponding to Calabi-Yau complete intersections in weighted projective spaces $\mathbb{P}(w_1, \ldots, w_n)$ and in product of projective spaces $\mathbb{P}^{d_1} \times \cdots \times \mathbb{P}^{d_p}$. The final section is devoted to applications of the Toric Residue Mirror Conjecture to the computation of Yukawa couplings for Calabi-Yau complete intersections.

Acknowledgements. This work was supported by DFG, Forschungsschwerpunkt "Globale Methoden in der komplexen Geometrie". E. Materov was supported in part by RFBR Grant 00-15-96140. We are also appreciate to hospitality and support of the Isaac Newton Institute in Cambridge.

2. TORIC RESIDUES

In this section we remind necessary well-known facts about toric residues (see [Cox, CDS, BM1]).

Let \widetilde{M} and $\widetilde{N} = \text{Hom}(\widetilde{M}, \mathbb{Z})$ be two free abelian groups of rank \tilde{d} dual to each other. We denote by

$$\langle \ast, \ast \rangle : \widetilde{M} \times \widetilde{N} \to \mathbb{Z}$$

the natural bilinear pairing, and by $\widetilde{M}_\mathbb{R}$ (resp. $\widetilde{N}_\mathbb{R}$) the real scalar extension of \widetilde{M} (resp. \widetilde{N}).
Definition 2.1 ([BB2]). A \tilde{d}-dimensional rational polyhedral cone C ($\tilde{d} > 0$) in $\tilde{M}_\mathbb{R}$ is called Gorenstein if it is strongly convex (i.e., $C + (-C) = \{0\}$), there exists an element $n_C \in \tilde{N}$ such that $\langle x, n_C \rangle > 0$ for any nonzero $x \in C$, and all vertices of the $(\tilde{d} - 1)$-dimensional convex polytope

$$\Delta(C) = \{ x \in C : \langle x, n_C \rangle = 1 \}$$

belong to \tilde{M}. The polytope $\Delta(C)$ is called the supporting polytope of C. For any $m \in C \cap \tilde{M}$, we define the degree of m as

$$\deg m = \langle m, n_C \rangle.$$

Definition 2.2. Let $\tilde{\Delta} = \Delta(C)$ be the supporting polytope for a Gorenstein cone $C \subset \tilde{M}_\mathbb{R}$. We denote by $S_{\tilde{\Delta}}$ the semigroup \mathbb{C}-algebra of the monoid of lattice points $C \cap \tilde{M}$. In order to transform the additive semigroup operation in $C \cap \tilde{M}$ into a multiplicative form in $S_{\tilde{\Delta}}$, we write t^m for the element in $S_{\tilde{\Delta}}$ corresponding to $m \in C$. One can consider $S_{\tilde{\Delta}}$ as a graded \mathbb{C}-algebra:

$$S_{\tilde{\Delta}} = \bigoplus_{l=0}^{\infty} S_{\tilde{\Delta}}^{(l)},$$

where the l-th homogeneous component $S_{\tilde{\Delta}}^{(l)}$ has a \mathbb{C}-basis consisting of all t^m such that $m \in C \cap \tilde{M}$ and $\deg m = l$. We define also the homogeneous ideal

$$I_{\tilde{\Delta}} = \bigoplus_{l=0}^{\infty} I_{\tilde{\Delta}}^{(l)}$$

in $S_{\tilde{\Delta}}$ whose \mathbb{C}-basis consists of all t^m such that m is a lattice point in the interior of C.

Definition 2.3. An element

$$g := \sum_{m \in \tilde{\Delta} \cap \tilde{M}} a_m t^m \in S_{\tilde{\Delta}}^{(1)}, \quad a_m \in \mathbb{C}$$

is called $\tilde{\Delta}$-regular if for some \mathbb{Z}-basis $n_1, \ldots, n_{\tilde{d}}$ of \tilde{N} the elements

$$g_i := \sum_{m \in \tilde{\Delta} \cap \tilde{M}} a_m \langle m, n_i \rangle t^m, \quad i = 1, \ldots, \tilde{d}$$

form a regular sequence in $S_{\tilde{\Delta}}$. We define the matrix $G := (g_{ij})_{1 \leq i, j \leq \tilde{d}}$, where

$$g_{ij} := \sum_{m \in \tilde{\Delta} \cap \tilde{M}} a_m \langle m, n_i \rangle \langle m, n_j \rangle t^m, \quad i, j = 1, \ldots, \tilde{d}.$$

The element

$$H_g := \det G$$
is called Hessian of g.

Remark 2.4. a) The definition of $\bar{\Delta}$-regularity does not depend on the choice of \mathbb{Z}-basis n_1, \ldots, n_d of N. In many applications the lattice vector n_C will be included in $\{n_1, \ldots, n_d\}$.

b) If $\bar{\Delta} \cap \bar{M} = \{m_1, \ldots, m_\mu\}$, then by [CDS, Proposition 1.2], one has

$$H_g = \sum_{1 \leq i_1 < \cdots < i_\mu \leq \mu} (\det(m_{i_1}, \ldots, m_{i_\mu}))^2 t^{m_{i_1} + \cdots + m_{i_\mu}}.$$

In particular, H_g is independent on the choice of the \mathbb{Z}-basis n_1, \ldots, n_d and $H_g \in I^{(d)}_{\bar{\Delta}}$.

c) The graded \mathbb{C}-algebra $S_{\bar{\Delta}}$ is Cohen-Macaulay and $I_{\bar{\Delta}}$ is its dualizing module. If g is $\bar{\Delta}$-regular in $S_{\bar{\Delta}}$, then

$$S_g := S_{\bar{\Delta}} / \langle g_1, \ldots, g_d \rangle S_{\bar{\Delta}},$$

is a graded finite-dimensional ring and

$$I_g := I_{\bar{\Delta}} / \langle g_1, \ldots, g_d \rangle I_{\bar{\Delta}}$$

is a graded S_g-module together with a non-degenerate pairing

$$S_g^{(l)} \times I_g^{(d-l)} \to I_g^{(d)} \simeq \mathbb{C}, \quad l = 0, \ldots, d - 1.$$ induced by the S_g-module structure.

Definition 2.5. By toric residue corresponding to a $\bar{\Delta}$-regular element $g \in S_{\bar{\Delta}}^{(1)}$ we mean the \mathbb{C}-linear mapping

$$\text{Res}_g : I^{(d)}_{\bar{\Delta}} \to \mathbb{C}$$

which is uniquely determined by two conditions:

(i) $\text{Res}_g(h) = 0$ for any $h \in \langle g_1, \ldots, g_d \rangle I_{\bar{\Delta}}$;

(ii) $\text{Res}_g(H_g) = \text{Vol}(\bar{\Delta})$, where $\text{Vol}(\bar{\Delta})$ denotes the volume of the $(d - 1)$-dimensional polytope $\bar{\Delta}$ multiplied by $(d - 1)!$.

Let $\mathbb{P}_{\bar{\Delta}} := \text{Proj} S_{\bar{\Delta}}$ be $(d - 1)$-dimensional toric variety associated with the polytope $\bar{\Delta}$ and $\mathcal{O}_{\mathbb{P}_{\bar{\Delta}}}(1)$ the corresponding ample sheaf on $\mathbb{P}_{\bar{\Delta}}$. Then one has the canonical isomorphisms of graded rings

$$S_{\bar{\Delta}} \cong \bigoplus_{l \geq 0} H^0(\mathbb{P}_{\bar{\Delta}}, \mathcal{O}_{\mathbb{P}_{\bar{\Delta}}}(l))$$

and graded modules

$$I_{\bar{\Delta}} \cong \bigoplus_{l \geq 0} H^0(\mathbb{P}_{\bar{\Delta}}, \omega_{\mathbb{P}_{\bar{\Delta}}}(l)).$$
where $\omega_{P_{\tilde{\Delta}}}$ is the dualizing sheaf on $P_{\tilde{\Delta}}$. In particular, we obtain a canonical isomorphism

$$I^{(\tilde{d})}_{\tilde{\Delta}} \cong H^0(P_{\tilde{\Delta}}, \omega_{P_{\tilde{\Delta}}}(\tilde{d})).$$

The following statement is a simple reformulation of Theorem 2.9(i) in [BM1]:

Proposition 2.6. Let $n_1, \ldots, n_{\tilde{d}}$ be a \mathbb{Z}-basis of \tilde{N} such that $n_1 = n_C$. Denote by $m_1, \ldots, m_{\tilde{d}}$ the dual \mathbb{Z}-basis of \tilde{M}. For any elements $h \in I^{(\tilde{d})}_{\tilde{\Delta}}$ and $g \in S_{\tilde{\Delta}}^{(1)}$, we define a rational differential $(\tilde{d} - 1)$-form on $P_{\tilde{\Delta}}$:

$$\Omega(h, g) := \frac{h}{g_1 \cdots g_{\tilde{d}}} \frac{dt^{m_2}}{t^{m_2}} \wedge \cdots \wedge \frac{dt^{m_{\tilde{d}}}}{t^{m_{\tilde{d}}}}.$$

If g is $\tilde{\Delta}$-regular, then

$$\text{Res}_g(h) = \sum_{\xi \in V_g} \text{res}_\xi(\Omega(h, g)),$$

where $V_g = \{ \xi \in P_{\tilde{\Delta}} : g_2(\xi) = \cdots = g_{\tilde{d}}(\xi) = 0 \}$ is the set of common zeros of $g_2, \ldots, g_{\tilde{d}}$ and $\text{res}_\xi(\Omega(h, g))$ is the local Grothendieck residue of the form $\Omega(h, g)$ at the point $\xi \in V_g$.

In particular, if all the common roots of $g_2, \ldots, g_{\tilde{d}}$ are simple and contained in the open dense $(\tilde{d} - 1)$-dimensional torus $T \subset P_{\tilde{\Delta}}$, then

$$\text{Res}_g(h) = \sum_{\xi \in V_g} \frac{p(\xi)}{g_1(\xi) H_g^1(\xi)},$$

where H_g^1 is the determinant of the matrix $G^1 := (g_{i,j})_{2 \leq i, j \leq \tilde{d}}$.

Definition 2.7 ([BB1]). A Gorenstein cone C is called **reflexive** if the dual cone

$$\check{C} = \{ y \in \tilde{N}_R : \langle x, y \rangle \geq 0 \quad \forall x \in C \}$$

is also Gorenstein, i.e., there exists $m_\check{C} \in \check{M}$ such that $\langle m_\check{C}, y \rangle > 0$ for all $y \in \check{C} \setminus \{0\}$, and all vertices of the supporting polytope

$$\Delta(\check{C}) = \{ y \in \check{C} : \langle m_\check{C}, y \rangle = 1 \}$$

belong to \tilde{N}. We will call the integer $r = \langle m_\check{C}, n_C \rangle$ the **index of C** (or \check{C}). A $(\tilde{d} - 1)$-dimensional lattice polytope Δ is called **reflexive** if it is a supporting polytope of some \tilde{d}-dimensional reflexive Gorenstein cone C of index 1. Moreover, the supporting polytope $\tilde{\Delta}^*$ of the dual cone \check{C} is also reflexive polytope which is called **dual** (or **polar**) to $\check{\Delta}$.
If C is a reflexive Gorenstein cone of index r, then I_Δ is a principal ideal generated by the element $t^{m \cdot \phi}$ of degree r. So one obtains the canonical isomorphism $I^{(f)}_\Delta \cong S^{(d-r)}_\Delta$. In particular, there exists the toric residue mapping
\[\text{Res}_g : S^{(d-r)}_\Delta \to \mathbb{C} \]
which is uniquely determined by the conditions:
(i) $\text{Res}_g(h) = 0$ for any $h \in (g_1, \ldots, g_d)_S_\Delta$;
(ii) $\text{Res}_g(H'_g) = \text{Vol}(\Delta)$, where $H_g = t^{m \cdot \phi} H'_g$.

3. Cayley trick and mixed toric residues

Let M be a free abelian group of rank d, $M_\mathbb{R} := M \otimes \mathbb{R}$, and $\Delta \subset M_\mathbb{R}$ a convex d-dimensional polytope with vertices in M. We assume that there exist r convex polytopes $\Delta_1, \ldots, \Delta_r$ with vertices in M such that Δ can be written as the Minkowski sum $\Delta = \Delta_1 + \cdots + \Delta_r$ (here we do not require that all polytopes $\Delta_1, \ldots, \Delta_r$ have maximal dimension d).

Definition 3.1. We set $\widetilde{M} := M \oplus \mathbb{Z}_r^r$, $\widetilde{d} := d + r$ and define the \widetilde{d}-dimensional Gorenstein cone $C = C(\Delta_1, \ldots, \Delta_r)$ in $\widetilde{M}_\mathbb{R} := M_\mathbb{R} \oplus \mathbb{R}^r$ as follows
\[C := \{(\lambda_1 x_1 + \cdots + \lambda_r x_r, \lambda_1, \ldots, \lambda_r) \in \widetilde{M}_\mathbb{R} : \lambda_i \geq 0, x_i \in \Delta_i, i = 1, \ldots, r\}. \]
The $(d + r - 1)$-dimensional polytope $\Delta_1 \ast \cdots \ast \Delta_r$ defined as the intersection of the cone C with the affine hyperplanes $\sum_{i=1}^r \lambda_i = 1$
\[\Delta_1 \ast \cdots \ast \Delta_r := \{(\lambda_1 x_1 + \cdots + \lambda_r x_r, \lambda_1, \ldots, \lambda_r) : \lambda_i \geq 0, \sum_{i=1}^r \lambda_i = 1, x_i \in \Delta_i\}, \]
will be called Cayley polytope associated with the Minkowski sum decomposition $\Delta = \Delta_1 + \cdots + \Delta_r$. It is clear that all vertices of $\Delta_1 \ast \cdots \ast \Delta_r$ are contained in \widetilde{M} and
\[\Delta_1 \ast \cdots \ast \Delta_r = \text{conv}((\Delta_1 \times \{b_1\}) \cup \cdots \cup (\Delta_r \times \{b_r\})), \]
where $\{b_1, \ldots, b_r\}$ is the standard basis of \mathbb{Z}^r. For fixed polytopes $\Delta_1, \ldots, \Delta_r$ we denote $\Delta_1 \ast \cdots \ast \Delta_r$ simply by Δ.

Definition 3.2. Define $S_\Delta := \mathbb{C}[C \cap \widetilde{M}]$ to be the semigroup algebra of the monoid $C \cap \widetilde{M}$ over complex numbers. The algebra S_Δ has a natural $\mathbb{Z}_{\geq 0}^r$-grading defined by the last r coordinates of lattice points in \widetilde{M}. By choosing an isomorphism $M \cong \mathbb{Z}^d$, we can identify S_Δ with a $\mathbb{Z}_{\geq 0}^r$-graded monomial subalgebra in
\[\mathbb{C}[t_{d+1}^{\pm 1}, \ldots, t_{d+r}^{\pm 1}], \]
where the \(\mathbb{Z}_{\geq 0} \)-grading is considered with respect to the last \(r \) variables \(t_{d+1}, \ldots, t_{d+r} \).

We denote by \(I_{\Delta} \) the \(\mathbb{Z}_{\geq 0} \)-graded monomial ideal in \(S_{\Delta} \) generated by all lattice points in the interior of \(\bar{C} \). For any \(k = (k_1, \ldots, k_r) \in \mathbb{Z}_{\geq 0}^r \), we denote by \(S^{(k)}_{\Delta} \) (resp. \(I^{(k)}_{\Delta} \)) the \(k \)-homogeneous component of \(S_{\Delta} \) (resp. \(I_{\Delta} \)). We will use also the total \(\mathbb{Z}_{\geq 0} \)-grading on \(S_{\Delta} \) and \(I_{\Delta} \). For any nonnegative integer \(l \), we denote the corresponding \(l \)-homogeneous components of \(S_{\Delta} \) and \(I_{\Delta} \) by \(S^{(l)}_{\Delta} \) and \(I^{(l)}_{\Delta} \) respectively.

So one has:

\[
S^{(l)}_{\Delta} = \bigoplus_{|k|=l} S^{(k)}_{\Delta}, \quad I^{(l)}_{\Delta} = \bigoplus_{|k|=l} I^{(k)}_{\Delta},
\]

where \(|k| = k_1 + \cdots + k_r \).

Let \(f_1(t), \ldots, f_r(t) \) be Laurent polynomials in \(\mathbb{C}[t_1^{\pm 1}, \ldots, t_d^{\pm 1}] \) such that \(\Delta_i \) is the Newton polytope of \(f_i \) (\(1 \leq i \leq r \)). We set

\[
F(t) := t_{d+1}f_1(t) + \cdots + t_{d+r}f_r(t).
\]

It is easy to see that \(\bar{\Delta} = \Delta_1 \ast \cdots \ast \Delta_r \) is the Newton polytope of \(F \). Moreover, using the decomposition

\[
S^{(l)}_{\Delta} = \bigoplus_{|k|=l} S^{(k)}_{\Delta} = \bigoplus_{i=1}^r S^{(k)}_{\Delta},
\]

we see that every Laurent polynomial \(G \) in \(\mathbb{C}[t_1^{\pm 1}, \ldots, t_d^{\pm 1}, t_{d+1}, \ldots, t_{d+r}] \) with the Newton polytope \(\bar{\Delta} \) can be obtained from the sequence of arbitrary Laurent polynomials \(g_1, \ldots, g_r \in \mathbb{C}[t_1^{\pm 1}, \ldots, t_d^{\pm 1}] \) by the formula \(G = t_{d+1}g_1 + \cdots + t_{d+r}g_r \), where \(\Delta_i \) is the Newton polytope of \(g_i \) (\(1 \leq i \leq r \)). The above correspondence \(\{f_1, \ldots, f_r\} \mapsto F \) is usually called Cayley trick. We call \(F = t_{d+1}f_1 + \cdots + t_{d+r}f_r \) the Cayley polynomial associated with \(f_1, \ldots, f_r \).

Definition 3.3. Let \(\Delta_1, \ldots, \Delta_r \subset M_{\mathbb{R}} \) be convex polytopes with vertices in \(M \) such \(\Delta = \Delta_1 + \cdots + \Delta_r \), has dimension \(d \). We say that \(r \) Laurent polynomials

\[
f_i(t) = \sum_{m \in \Delta_i \cap M} a^{(i)}_m t^m, \quad i = 1, \ldots, r
\]

form a \(\bar{\Delta} \)-regular sequence if the corresponding Cayley polynomial \(F \) is \(\bar{\Delta} \)-regular, i.e., the polynomials

\[
F_i := t_i \partial / \partial t_i F, \quad i = 1, \ldots, d + r
\]

form a regular sequence in \(S_{\Delta} \).

Definition 3.4. Let \(f_1(t), \ldots, f_r(t) \) be Laurent polynomials with Newton polytopes \(\Delta_1, \ldots, \Delta_r \) as above, \(F = t_{d+1}f_1 + \cdots + t_{d+r}f_r \) the corresponding Cayley polynomial, and

\[
H_F := \det \left(t_i \frac{\partial F_j}{\partial t_j} \right)_{1 \leq i, j \leq d + r} = \det \left(\left(t_i \frac{\partial}{\partial t_i} \right) \left(t_j \frac{\partial}{\partial t_j} \right) F \right)_{1 \leq i, j \leq d + r} \in I^{(d+r)}_{\Delta} \subset S^{(d+r)}_{\Delta}
\]
the Hessian of F. For any $k = (k_1, \ldots, k_r)$ with $|k| = d + r$ we define $H^k_F \in I^k_\Delta$ to be the k-homogeneous component of H_F. The polynomial H^k_F will be called k-mixed Hessian of f_1, \ldots, f_r.

Remark 3.5. Since the last r rows of the matrix
\[
\begin{pmatrix}
(t_i \frac{\partial}{\partial t_i}) & (t_j \frac{\partial}{\partial t_j}) & F \\
\end{pmatrix}_{i,j \leq d+r}
\]
are divisible respectively by t_{d+1}, \ldots, t_{d+r}, the Hessian H_F is divisible by the monomial $t_{d+1} \cdots t_{d+r}$. Therefore $H^k_F = 0$ if one of the coordinates k_i of $k - (k_1, \ldots, k_r)$ is zero. In particular, one has
\[
H_F = \sum_{k \in \mathbb{Z}_{>0}^r, |k| = d + r} H^k_F.
\]

Let $k = (k_1, \ldots, k_r) \in \mathbb{Z}^r_{>0}$ be a solution of the linear Diophantine equation
\[
|k| = k_1 + \cdots + k_r = d + r.
\]
For any r subsets $S_i \subset \Delta_i \cap M$ such that $|S_i| = k_i$ $(1 \leq i \leq r)$ we define the nonnegative integer $\nu(S_1, \ldots, S_r)$ as follows: choose an element s_i in each S_i $(1 \leq i \leq r)$, define S to be the $d \times r$-matrix whose rows are all possible nonzero vectors $s - s_i$, where $s \in S_i$, $1 \leq i \leq r$, and set $\nu(S_1, \ldots, S_r) := (\det S)^2$. It is easy to see that up to sign $\det S$ does not depend on the choice of elements $s_i \in S_i$ and therefore $\nu(S_1, \ldots, S_r)$ is well defined.

Proposition 3.6. Let $k = (k_1, \ldots, k_r) \in \mathbb{Z}^r_{>0}$ be a positive integral solution of the linear Diophantine equation
\[
|k| = k_1 + \cdots + k_r = d + r.
\]
Then the mixed Hessian can be computed by the following formula
\[
H^k_F = t_{d+1}^{k_1} \cdots t_{d+r}^{k_r} \sum_{(S_1, \ldots, S_r)} \nu(S_1, \ldots, S_r) \prod_{i=1}^r \prod_{s_i \in S_i} a_{s_i}^{(i)} t^{s_i},
\]
where the sum runs over all r-tuples (S_1, \ldots, S_r) of subsets $S_i \subset \Delta_i \cap M$ such that $|S_i| = k_i$ $(1 \leq i \leq r)$.

Proof. The formula for H^k_F follows immediately from the formula in 2.4(b) applied to the Cayley polytope Δ.

Definition 3.7. Let $k = (k_1, \ldots, k_r) \in \mathbb{Z}^r_{>0}$ be a positive integral solution of the equation
\[
|k| = k_1 + \cdots + k_r = d + r.
\]
Consider the toric residue
\[
\text{Res}_F : f^{(d+r)}_\Delta \to \mathbb{C}
\]
defined as a \(\mathbb{C}\)-linear map which vanishes on \(\langle F_1, \ldots, F_{d+r}\rangle I_\Delta\) and sends \(H_F\) to \(\text{Vol}(\tilde{\Delta}) = \text{Vol}(\Delta_1 \ast \cdots \ast \Delta_r)\). The restriction \(\text{Res}^k_F\) of \(\text{Res}_F\) to the \(k\)-th homogeneous component \(I^k_\Delta\):

\[
\text{Res}^k_F : I^k_\Delta \to \mathbb{C}
\]

will be called the \(k\)-mixed toric residue associated with \(f_1, \ldots, f_r\).

Since \(H^k_F\) is an element of \(I^k_\Delta\), it is natural to ask about the value of \(\text{Res}^k_F(H^k_F)\).

Conjecture 3.8. Let \(k = (k_1, \ldots, k_r) \in \mathbb{Z}_{>0}^r\) be a positive integral solution of \(k_1 + \cdots + k_r = d + r\). We set \(\bar{k} = (\bar{k}_1, \ldots, \bar{k}_r) := (k_1 - 1, \ldots, k_r - 1)\). Then

\[
\text{Res}^k_F(H^k_F) = V(\underbrace{\Delta_1 \ast \cdots \ast \Delta_1}_{\bar{k}_1}, \ldots, \underbrace{\Delta_r \ast \cdots \ast \Delta_r}_{\bar{k}_r}),
\]

where \(V(\Theta_1, \ldots, \Theta_d)\) denotes the mixed volume of convex polytopes \(\Theta_1, \ldots, \Theta_d\) multiplied by \((d + r - 1)\)!

Our conjecture agrees with a result of Danilov and Khovanskii:

Proposition 3.9. [DK, \S 6] The normalized volume of the Cayley polytope \(\tilde{\Delta} = \Delta_1 \ast \cdots \ast \Delta_r\) can be computed by the following formula:

\[
\text{Vol}(\Delta_1 \ast \cdots \ast \Delta_r) = \sum_{|\bar{k}| = d} V(\underbrace{\Delta_1 \ast \cdots \ast \Delta_1}_{\bar{k}_1}, \ldots, \underbrace{\Delta_r \ast \cdots \ast \Delta_r}_{\bar{k}_r}).
\]

Remark 3.10. Let \(r = d\) and \(k = (d + 1, 1, \ldots, 1)\). It follows from 3.6 and 2.4(b) that

\[
H^k_F = H_{t_{d+1}, f_1}(t_{d+2}, f_2) \cdots (t_{2d}, f_d),
\]

where

\[
H_{t_{d+1}, f_1} = \det \left(\begin{array}{cc}
 t_i & \frac{\partial}{\partial t_i} \\
 t_j & \frac{\partial}{\partial t_j}
\end{array} \right)_{1 \leq i, j \leq d+1}.
\]

On the other hand, we have

\[
V(\underbrace{\Delta_1 \ast \cdots \ast \Delta_1}_{\bar{k}_1}, \ldots, \underbrace{\Delta_r \ast \cdots \ast \Delta_r}_{\bar{k}_r}) = V(\underbrace{\Delta_1 \ast \cdots \ast \Delta_1}_{d}) = \text{Vol}(\Delta_1).
\]

Therefore, Conjecture 3.8 can be considered as a "generalization" of 2.5(ii).

It is easy to show that the cone \(F\) from 3.1 is a reflexive Gorenstein cone of index \(r\) if and only if \(\Delta = \Delta_1 + \cdots + \Delta_r\) is a reflexive polytope. In this situation, we have

\[
I_\Delta = t_{d+1} \cdots t_{d+r} S_\Delta.
\]

Therefore one has canonical isomorphisms:

\[
I^k_\Delta \cong S^k_\Delta, \quad \forall k \in \mathbb{Z}_{>0},
\]
where the monomial basis in $S^\mathbf{k}_\Delta$ can be identified with the set of all lattice points in \\
$\mathbf{k}_1\Delta_1 + \cdots + \mathbf{k}_r\Delta_r$. The \mathbf{k}-homogeneous component of corresponding toric residue map \\
\\n$$
\text{Res}^\mathbf{k}_\Delta : S^\mathbf{k}_\Delta \rightarrow \mathbb{C}.
$$
\\nwill be also called \mathbf{k}-mixed toric residue.

4. Toric Residue Mirror Conjecture

Let M and $N = \text{Hom}(M, \mathbb{Z})$ be the dual to each other abelian groups of rank d,
$M_\mathbb{R}$ and $N_\mathbb{R}$ their \mathbb{R}-scalar extensions and $\Delta \subset M_\mathbb{R}$ a reflexive polytope with the
unique interior lattice point $0 \in M$. Denote by \mathbb{P}_Δ a Gorenstein toric Fano variety
associated with Δ. Let D_1, \ldots, D_s be the toric divisors on \mathbb{P}_Δ corresponding to
the codimension-1 faces $\Theta_1, \ldots, \Theta_s$ and e_1, \ldots, e_s the vertices of the dual reflexive
polytope $\Delta^* \subset N_\mathbb{R}$ such that
\\n$$
\Delta = \{ x \in M_\mathbb{R} : \langle x, e_j \rangle \geq -1, \; j = 1, \ldots, s \},
$$
\\n$$
\Theta_j = \Delta \cap \{ x \in M_\mathbb{R} : \langle x, e_j \rangle = -1 \}, \; j = 1, \ldots, s.
$$
\\
Definition 4.1. A Minkowski sum $\Delta = \Delta_1 + \cdots + \Delta_r$ is called a nef-partition
of the reflexive polytope Δ if all vertices of $\Delta_1, \ldots, \Delta_r$ belong to M, and
\\n$$
\min_{x \in \Delta_i} \langle x, e_j \rangle \in \{ 0, -1 \}, \; \forall 1 \leq i \leq r, \; \forall 1 \leq j \leq s.
$$
\\
Since $\min_{x \in \Delta} \langle x, e_j \rangle = -1$ for all $j \in \{ 1, \ldots, s \}$, the equality $\min_{x \in \Delta_i} \langle x, e_j \rangle = -1$
holds exactly for one index $i \in \{ 1, \ldots, r \}$ if we fix a vertex $e_j \in \Delta^*$. Therefore,
we can split the set of vertices $\{ e_1, \ldots, e_s \} \subset \Delta^*$ into a disjoint union of subsets
B_1, \ldots, B_r where
\\n$$
B_i := \{ e_j : j \in \{ 1, \ldots, s \}, \; \min_{x \in \Delta_i} \langle x, e_j \rangle = -1 \}.
$$
\\
Now we can define r nef Cartier divisors
\\n$$
E_i := \sum_{j : e_j \in B_i} D_j, \; i = 1, \ldots, r.
$$
\\
Therefore, a nef-partition $\Delta = \Delta_1 + \cdots + \Delta_r$ of polytopes induces a partition of
the anti-canonical divisor $-K_{\mathbb{P}_\Delta} = D_1 + \cdots + D_n$ of \mathbb{P}_Δ into a sum of r nef Cartier divisors:
\\n$$
-K_{\mathbb{P}_\Delta} = E_1 + \cdots + E_r.
$$
\\
Now it is easy to see that the above definition of the nef-partition is equivalent to the definition given in [Bo].
Definition 4.2. If $\Delta = \Delta_1 + \cdots + \Delta_r$ is a nef-partition, then for any $i = 1, \ldots, r$ we denote

$$\nabla_i := \{ y \in N_\mathbb{R} : \langle x, y \rangle \geq -\delta_{ij}, \ x \in \Delta_j, \ j = 1, \ldots, r \}. $$

The lattice polytopes $\nabla_1, \ldots, \nabla_r$ define another nef-partition $\nabla := \nabla_1 + \cdots + \nabla_r$ of the reflexive polytope $\nabla \subset N_\mathbb{R}$ which is called dual nef-partition.

The lattice polytopes $\nabla_1, \ldots, \nabla_r$ can be also defined as

$$\nabla_j := \text{conv}(\{0\} \cup B_j) \subset M_\mathbb{R}, \quad j = 1, \ldots, r.$$

Moreover, one has two dual reflexive polytopes

$$\Delta^* = \text{conv}(\nabla_1 \cup \cdots \cup \nabla_r) \subset N_\mathbb{R}$$

$$\nabla^* = \text{conv}(\Delta_1 \cup \cdots \cup \Delta_r) \subset M_\mathbb{R}.$$

Nef-partition $\Delta = \Delta_1 + \cdots + \Delta_r$ defines a family of $(d-r)$-dimensional Calabi-Yau complete intersections defined by vanishing of r Laurent polynomials f_1, \ldots, f_r with Newton polytopes $\Delta_1, \ldots, \Delta_r$. According to [Bo], the dual nef-partition $\nabla = \nabla_1 + \cdots + \nabla_r$ defines the mirror dual family of Calabi-Yau complete intersections.

Define A_j to be a subset in $\Delta_j \cap M$ containing all vertices of Δ_j and set $A_j := A_j \setminus \{0\}, \ j = 1, \ldots, r$. It is easy to see that $A_i \cap A_j = \emptyset$ for all $i \neq j$. We set $A_1 \cup \cdots \cup A_r := \{v_1, \ldots, v_n\}$ and define $a_1, \ldots, a_n \in \mathbb{C}$ to be the coefficients of the Laurent polynomials

$$f_j(t) := 1 - \sum_{i : v_i \in A_j} a_i t^{v_i}, \quad j = 1, \ldots, r.$$

Let $A := \{0\} \cup A_1 \cup \cdots \cup A_r$ and $\tilde{\Delta} = \Delta_1 \ast \cdots \ast \Delta_r$ be the Cayley polytope. Denote by π the injective mapping

$$A_1 \cup \cdots \cup A_r \to \tilde{\Delta} \cap \tilde{M}$$

which sends a nonzero lattice point $m \in A_j$ to (m, b_j) ($1 \leq j \leq r$) and define

$$\tilde{A} := \pi(A_1 \cup \cdots \cup A_r) \cup \{(0, b_1), \ldots, (0, b_r)\}.$$

We hold notations from [BM1, §4].

Definition 4.3. Choose a coherent triangulation $\mathcal{T} = \{\tau_1, \ldots, \tau_p\}$ of the reflexive polytope $\nabla^* = \text{conv}(\Delta_1 \cup \cdots \cup \Delta_r)$ associated with A such that 0 is a vertex of all its d-dimensional simplices τ_1, \ldots, τ_p. Define a coherent triangulation $\tilde{\mathcal{T}} = \{\tilde{\tau}_1, \ldots, \tilde{\tau}_p\}$ of $\tilde{\Delta} = \Delta_1 \ast \cdots \ast \Delta_r$ associated with \tilde{A} as follows: a $(d + r - 1)$-dimensional simplex $\tilde{\tau}_i \in \tilde{\mathcal{T}}$ is the convex hull of π-images of all nonzero vertices of τ and $\{(0, b_1), \ldots, (0, b_r)\}$. We call $\tilde{\mathcal{T}}$ the induced triangulation of $\tilde{\Delta}$.
Let \(P := P_{\Sigma(T)} \) be the \(d \)-dimensional simplicial toric variety defined by the fan \(\Sigma(T) \subset M_\mathbb{R} \) (\(P \) is a partial crepant desingularization of the Gorenstein toric Fano variety \(P_V \)) and denote by \(P_\beta \) the Morrison-Plesser moduli space [BM1, Definition 3.3] corresponding to a lattice point
\[
\beta = (\beta_1, \ldots, \beta_n) \in R(\Sigma) = \{(x_1, \ldots, x_n) \in \mathbb{Z}^n : x_1 v_1 + \cdots + x_n v_n = 0\}
\]
in the Mori cone \(K_{\text{eff}}(P) \). One has a canonical surjective homomorphism
\[
\psi_\beta : H^2(P, \mathbb{Q}) \to H^2(P_\beta, \mathbb{Q}).
\]

Definition 4.4. By abuse of notations, let us denote by \([D_j] \in H^2(P_\beta, \mathbb{Q})\) (\(1 \leq j \leq n\)) the image of \([D_j] \in H^2(P, \mathbb{Q})\) under \(\psi_\beta\). Using the multiplication in the cohomology ring \(H^\ast(P_\beta, \mathbb{Q})\), we define the intersection product
\[
\Phi_\beta := [E_1]^{(E_1, \beta)} \cdots [E_r]^{(E_r, \beta)} \prod_{i : (D_i, \beta) < 0} [D_i]^{-(D_i, \beta) - 1}
\]
considered as a cohomology class in \(H^{2(\dim P_\beta - d)}(P_\beta, \mathbb{Q})\) and call \(\Phi_\beta\) the **Morrison-Plesser class** corresponding to the nef-partition \(\Delta = \Delta_1 + \cdots + \Delta_r\).

Definition 4.5. Let \(k = (k_1, \ldots, k_r) \in \mathbb{Z}_{\geq 0}^r \) be a positive integral solution of
\[
|k| = k_1 + \cdots + k_r = d + r.
\]

A polynomial \(P(x_1, \ldots, x_n) \in \mathbb{Q}[x_1, \ldots, x_n] \) is called \(k \)-homogeneous if it is homogeneous of degree \(k_i = k_i - 1 \) with respect to every group of \(|A_i|\) variables \(x_j \) \((v_j \in A_i)\) \((1 \leq i \leq r)\).

Now we are able to formulate a generalized Toric Residue Mirror Conjecture:

Conjecture 4.6. Let \(\Delta = \Delta_1 + \cdots + \Delta_r \) and \(\nabla = \nabla_1 + \cdots + \nabla_r \) be two arbitrary dual nef-partitions. Choose any coherent triangulation \(T = \{\tau_1, \ldots, \tau_p\} \) of \(\nabla^\ast \) associated with \(A \) such that 0 is a vertex of all the simplices \(\tau_1, \ldots, \tau_p \) as above. Then for any \(k \)-homogeneous polynomial \(P(x_1, \ldots, x_n) \in \mathbb{Q}[x_1, \ldots, x_n] \) of degree \(d \) the Laurent expansion of the \(k \)-mixed toric residue
\[
R_P(a) := (-1)^d \text{Res}^\mathbf{\bar{\Delta}}_{\mathbf{F}}(t_{d+1}^{k_1} \cdots t_{d+r}^{k_r} P(a_1 t_1^{\tau_1}, \ldots, a_n t_\tau^{\tau_p}))
\]
at the vertex \(v_{\bar{\tau}} \in \text{Sec}(\mathbf{\bar{\Delta}}) \) corresponding to the induced triangulation \(\bar{T} = \{\bar{\tau}_1, \ldots, \bar{\tau}_p\} \) coincides with the generating function of intersection numbers
\[
I_P(a) := \sum_{\beta \in K_{\text{eff}}(P)} I(P, \beta) a^\beta,
\]
where the sum runs over all integral points \(\beta = (\beta_1, \ldots, \beta_n) \) of the Mori cone \(K_{\text{eff}}(P) \), \(a^\beta := a_1^{\beta_1} \cdots a_n^{\beta_n} \),
\[
I(P, \beta) = \int_{P_\beta} P([D_1], \ldots, [D_n]) \Phi_\beta = \langle P([D_1], \ldots, [D_n]) \Phi_\beta \rangle_\beta,
\]
and \(\Phi_\beta \in H^{2(\dim \mathbb{P}_\beta - d)}(\mathbb{P}_\beta, \mathbb{Q}) \) is the Morrison-Plesser class of \(\mathbb{P}_\beta \). We assume
\(I(P, \beta) \) to be zero if \(\mathbb{P}_\beta \) is empty.

5. Complete intersections in weighted projective spaces

Let \(\mathbb{P} = \mathbb{P}(w_1, \ldots, w_n) \) be a \(d \)-dimensional weighted projective space, \(n = d + 1 \). The fan \(\Sigma \) of \(\mathbb{P}(w_1, \ldots, w_n) \) is determined by \(n \) vectors \(v_1, \ldots, v_n \in M \cong \mathbb{Z}^d \) which generate \(M \) and satisfy the relation

\[w_1v_1 + \cdots + w_nv_n = 0. \]

If we assume that \(\gcd(w_1, \ldots, w_n) = 1 \) and

\[w_i(w_1 + \cdots + w_n), \quad i = 1, \ldots, n, \]
then \(\mathbb{P} \) is a Gorenstein toric Fano variety with the anticanonical divisor \(-K_\mathbb{P} = D_1 + \cdots + D_n \), where \(D_i \) is the toric divisor corresponding to the vector \(v_i \). These divisors are related modulo rational equivalence as

\[\frac{[D_1]}{w_1} = \cdots = \frac{[D_n]}{w_n} =: [D_0]. \]

Consider a decomposition \(\{v_1, \ldots, v_n\} \) into a disjoint union of \(r \) nonempty subsets \(A_1, \ldots, A_r \) and define the divisors \(E_i := \sum_{j : v_j \in A_i} D_j \) on \(\mathbb{P} \) such that \([E_i] = d_i[D_0]\), where \(d_j = \sum_{i \in A_j} w_i \), \(j = 1, \ldots, r \). Note that the integers \(d_i \) satisfy \(d_1 + \cdots + d_r = w_1 + \cdots + w_n \). Let \(\Delta_i := \text{conv}(\{0\} \cup A_i) \) \((1 \leq i \leq r) \). The polytopes \(\Delta_1, \ldots, \Delta_r \) define a nef-partition \(\Delta := \Delta_1 + \cdots + \Delta_r \) if and only if

\[w_i|d_j, \quad i = 1, \ldots, n, \quad j = 1, \ldots, r. \]

The following result generalizes [BM1, Theorem 7.3]:

Theorem 5.1. Let \(P \in \mathbb{Q}[x_1, \ldots, x_n] \) be a homogeneous polynomial of degree \(d \). Then the generating function of intersection numbers on the Morrison-Plesser moduli spaces has the form

\[I_P(y) = \nu \cdot P(w_1, \ldots, w_n) \sum_{b \geq 0} \mu^b y^b = \frac{\nu \cdot P(w_1, \ldots, w_n)}{1 - \mu y}, \]

where

\[\nu := \frac{1}{w_1 \cdots w_n}, \quad \mu := \frac{d_1^{w_1} \cdots d_r^{w_n}}{w_1^{w_1} \cdots w_n^{w_n}}, \quad y := a_1^{w_1} \cdots a_n^{w_n}. \]

Proof. The lattice points \(\beta \) in the Mori cone of \(\mathbb{P} \) correspond to the linear relations

\[bw_1v_1 + \cdots + bw_nv_n = 0, \quad b \in \mathbb{Z}_{\geq 0}. \]

Therefore we set \(y := a_1^{w_1} \cdots a_n^{w_n} \).
The Morrison-Plesser moduli space \(\mathbb{P}_\beta \) is the \((\sum_{i=1}^n w_i)b + d \)-dimensional weighted projective space:

\[
\mathbb{P}(w_1, \ldots, w_1, \ldots, w_n, \ldots, w_n).
\]

It is easy to see that the Morrison-Plesser class defined by the nef-partition is

\[
\Phi_\beta = (d_1[D_0])^{\frac{d_1}{b+1}} \cdots (d_r[D_0])^{\frac{d_r}{b+1}}.
\]

Using \(\langle [D_0]^{\dim \mathbb{P}_\beta} \rangle_\beta = 1/w_1^{w_1 b+1} \cdots w_n^{w_n b+1} \), we obtain

\[
I_P(y) = \sum_{b \geq 0} \langle P([D_1], \ldots, [D_n])(d_1[D_0])^{\frac{d_1}{b+1}} \cdots (d_r[D_0])^{\frac{d_r}{b+1}} \rangle_\beta y^b
\]

\[
= P(w_1, \ldots, w_n) \sum_{b \geq 0} (d_1^{d_1} \cdots d_r^{d_r})^b \langle [D_0]^{\dim \mathbb{P}_\beta} \rangle_\beta y^b
\]

\[
= P(w_1, \ldots, w_n) \sum_{b \geq 0} (d_1^{d_1} \cdots d_r^{d_r})^b \frac{1}{w_1^{w_1 b+1} \cdots w_n^{w_n b+1}} y^b
\]

\[
= \nu \cdot P(w_1, \ldots, w_n) \sum_{b \geq 0} \mu^b y^b
\]

\[
= \nu \cdot P(w_1, \ldots, w_n) \frac{1}{1 - \mu y}.
\]

\[\square\]

The convex hull of the vectors \(v_1, \ldots, v_n \) is a reflexive polytope \(\nabla^* \subset M_\mathbb{R} \cong \mathbb{R}^d \). Let \(\tilde{M} := M \oplus \mathbb{Z}^r \) be an extension of the lattice \(M \) and \(\{ b_1, \ldots, b_r \} \) the standard basis of \(\mathbb{Z}^r \). The \((d + r - 1)\)-dimensional Cayley polytope

\[
\tilde{\Delta} = \Delta_1 \ast \cdots \ast \Delta_r
\]

is the convex hull of \((d + r + 1)\) points: \((0, b_1), \ldots, (0, b_r)\) and \((v_k, b_j)\) \((k = 1, \ldots, d + 1)\), where \(v_k \in A_j \). We denote this set of points by \(\tilde{A} \). The points from \(\tilde{A} \) are affinely dependent, while any proper subset of \(\tilde{A} \) is affinely independent, i.e., defines a circuit (see [GKZ, Chapter 7]). It is easy to see that the only affine relation (up to a real multiple) between the points from \(A \) is

\[
d_1 e_1 + \cdots + d_r e_r - w_1 u_1 - \cdots - w_n u_n = 0.
\]

Thus by [GKZ, Chapter 7, Proposition 1.2], polytope \(\tilde{\Delta} \) has exactly two triangulations: the triangulation \(\mathcal{T} = \mathcal{T}_1 \) with the simplices \(\text{conv}(A \setminus \{e_i\}), \ i = 1, \ldots, r \), and the triangulation \(\mathcal{T}_2 \) with the simplices \(\text{conv}(A \setminus \{u_k\}), \ k = 1, \ldots, n \). Note that

(1) \[\text{Vol}(\text{conv}(A \setminus \{e_i\})) = d_i, \ i = 1, \ldots, r,\]

(2) \[\text{Vol}(\text{conv}(A \setminus \{v_k\})) = w_k, \ k = 1, \ldots, n.\]
Therefore \(\text{Vol}(\bar{\Delta}) = \sum_{i=1}^r d_i = \sum_{k=1}^n w_k. \)

Let
\[
f_j(t) := 1 - \sum_{i : v_i \in A_j} a_i t^{v_i} \in \mathbb{C}[t_1^{\pm 1}, \ldots, t_d^{\pm 1}], \quad j = 1, \ldots, r
\]
be generic Laurent polynomials. Denote by
\[
F(t) = t_{d+1} f_1(t) + \cdots + t_{d+r} f_r(t)
\]
a Laurent polynomial whose support polytope is \(\bar{\Delta}. \)

The next statement follows directly from [GKZ, Chapter 9, Proposition 1.8] and from the equalities (1), (2).

Proposition 5.2. The \(A \)-discriminant of \(F \) is equal (up to sign) to the binomial
\[
D_A(F) = \prod_{k=1}^n w_k^{w_k} - \prod_{i=1}^r d_i \prod_{k=1}^n a_k^{w_k} = \prod_{k=1}^n w_k^{w_k}(1 - \mu y),
\]
where \(y = \prod_{k=1}^n a_k^{w_k} \) and the first summand in \(D_A(F) \) corresponds to the triangulation \(\mathcal{T} \).

Theorem 5.3. Let \(P(x_1, \ldots, x_n) \in \mathbb{C}[x_1, \ldots, x_n] \) be a \(\bar{k} \)-homogeneous polynomial with \(|\bar{k}| = d \). Then
\[
R_P(a) = (-1)^d \text{Res}_F^k \left(t_1^{v_1} \cdots t_d^{v_d} P(a_1 x_1, \ldots, a_n x_n) \right) = \frac{\nu \cdot P(w_1, \ldots, w_n)}{1 - \mu y},
\]
where \(y := a_1^{w_1} \cdots a_n^{w_n} \).

Proof. By Proposition 2.6 the toric residue \(R_P(a) \) is the following sum over the critical points \(\xi \) of the polynomial \(F_1(t, y) := f_1(t) + y_2 f_2(t) + \cdots + y_r f_r(t) \), where \((t, y) \in (\mathbb{C}^*)^d \times (\mathbb{C}^*)^{r-1} \):
\[
R_P(a) = (-1)^d \sum_{\xi \in \mathcal{V}_1} \frac{P(a_1 \xi^{v_1}, \ldots, a_n \xi^{v_n})}{F_1(\xi)} H_{F_1}(\xi).
\]

We rewrite polynomial \(F_1 \) as
\[
F_1 = y_2 + \cdots + y_r + 1 - \sum_{i=1}^n c_i t^{v_i},
\]
where \(c_i = y_j \cdot a_i \) if \(v_i \in A_j \). Then at the critical point \(\xi \), we have
\[
\frac{\xi^{v_1}}{w_1} = \cdots = \frac{\xi^{v_n}}{w_n} = z
\]
and
\[
z^{w_1 + \cdots + w_n} = \left(\frac{c_1}{w_1} \right)^{w_1} \cdots \left(\frac{c_n}{w_n} \right)^{w_n}.
\]
Moreover, at the critical points one has:

\[f_2(\xi) = \cdots = f_r(\xi) = 0, \]

which is equivalent to

\[
f_j(\xi) = 1 - \sum_{i: w_i \in A_j} a_i \xi^{w_i} = 1 - \left(\sum_{i: w_i \in A_j} w_i \right) \frac{z}{\eta_j} = 1 - \frac{d_j z}{\eta_j} = 0, \quad j = 2, \ldots, r,
\]

where \(\eta_j \) is the value of \(y_j \) at the critical point. Hence, it is easy to see that \(\eta_j = d_j z, \) \((j = 2, \ldots, r) \) and \(F_1 = 1 - d_1 z, \) which implies

\[
z^{w_1 + \cdots + w_n} = \left(\frac{a_1}{w_1} \right)^{w_1} \cdots \left(\frac{a_n}{w_n} \right)^{w_n} d_2^{d_2} \cdots d_r^{d_r} z^{d_2 + \cdots + d_r},
\]

or, equivalently,

\[
z^{d_1} = \left(\frac{a_1}{w_1} \right)^{w_1} \cdots \left(\frac{a_n}{w_n} \right)^{w_n} d_2^{d_2} \cdots d_r^{d_r}.
\]

The value of the Hessian \(H^1_F \) at \(\xi \) equals

\[
H^1_F(\xi) = (-1)^d w_1 \cdots w_n d_1 \cdots d_r z^{d+r-1}.
\]

Since there are exactly \(w_1 + \cdots + w_n = d_1 + \cdots + d_r \) critical points of \(F, \) the summation over the critical points is equivalent to the summation over the roots of (3), we get

\[
R_P(y) = \sum_{x^{d_1} = \left(\frac{a_1}{w_1} \right)^{w_1} \cdots \left(\frac{a_n}{w_n} \right)^{w_n} d_2^{d_2} \cdots d_r^{d_r}} \frac{P(w_1, \ldots, w_n)}{w_1 \cdots w_n d_1 (1 - d_1 z)}
= \frac{P(w_1, \ldots, w_n)}{w_1 \cdots w_n} \sum_{b \geq 0} (d_1^{d_1} \cdots d_r^{d_r})^{b} \left(\frac{a_1^{w_1} \cdots a_n^{w_n}}{w_1^{w_1} \cdots w_n^{w_n}} \right)^{b}
= \nu \cdot P(w_1, \ldots, w_n).
\]

\[
6. \text{ Complete intersections in product of projective spaces}
\]

In this section, we check the Toric Residue Mirror Conjecture for nef-partitions corresponding to mirrors of complete intersections in product of projective spaces \(P = P^{d_1} \times \cdots \times P^{d_p} \) of dimension \(d = d_1 + \cdots + d_p. \) We set \(n_i := d_i + 1 \) and denote by \(N = (n_{ij}) \) an integral \(p \times r \)-matrix with non-negative elements having columns \(n_1, \ldots, n_r \in \mathbb{Z}_{\geq 0}^p. \) A complete intersection \(V \) of \(r \) hypersurfaces \(V_1, \ldots, V_r \) in \(P \) of
multidegrees \(n_1, \ldots, n_r \) is a Calabi-Yau \((d - r)\)-fold if and only if \(\sum_{j=1}^r n_{ij} = n_i \) \((i = 1, \ldots, p)\). We will use the standard notation

\[
\begin{pmatrix}
\mathbb{P}^{d_1} & n_{11} & \cdots & n_{1r} \\
\vdots & \vdots & & \vdots \\
\mathbb{P}^{d_p} & n_{p1} & \cdots & n_{pr}
\end{pmatrix}
\]

to denote this complete intersection.

The cone of effective curves \(K_{\text{eff}}(\mathbb{P}) \) is isomorphic to \(\mathbb{R}_{\geq 0}^p \) and its integral part \(K_{\text{eff}}(\mathbb{P})_{\mathbb{Z}} \) consists of the points \(\beta = (b_1, \ldots, b_p) \in \mathbb{Z}_{\geq 0}^p \). Thus, the Morrison-Plesser moduli spaces are the products of projective spaces: \(\mathbb{P}_\beta = \mathbb{P}^{n_1 b_1 + d_1} \times \cdots \times \mathbb{P}^{n_p b_p + d_p} \) and the generating function for intersection numbers may be written

\[
I_\beta(y) = \sum_{b_1, \ldots, b_p \geq 0} I(P, \beta) y_1^{b_1} \cdots y_p^{b_p}.
\]

Theorem 6.1. The generating function for intersection numbers associated with monomial \(x^k = x_1^{k_1} \cdots x_p^{k_p} \) can be written as the integral

\[
I_{x^k}(y) = \left(\frac{1}{2\pi i} \right)^p \int_\Gamma \frac{z_1^{k_1} \cdots z_p^{k_p} dz_1 \wedge \cdots \wedge dz_p}{G_1(z) \cdots G_p(z)},
\]

where the polynomials \(G_i \) have the form

\[
G_i = z_i^{n_i} - \prod_{j=1}^r (n_{ij} z_1 + \cdots + n_{pj} z_p)^{n_{ij}}, \quad i = 1, \ldots, p,
\]

and \(\Gamma \) is the compact cycle in \(\mathbb{CP}^1 \) defined by \(\Gamma = \{|G_1| = \cdots = |G_p| = \epsilon\} \) for small positive \(\epsilon \).

Proof. Let \([H_1]\) denotes the class of hyperplane section in \(\mathbb{P}^{d_1} \). The class of the divisor \(E_j \) defining hypersurface \(V_j \) equals

\[
[E_j] = n_{1j} [H_1] + \cdots + n_{pj} [H_p], \quad j = 1, \ldots, r.
\]

Hence, the coefficients of the series \(I_{x^k}(y) \) are

\[
([H_1]^{k_1} \cdots [H_p]^{k_p} \prod_{j=1}^r (n_{1j}[H_1] + \cdots + n_{pj}[H_p])^{n_{1j} b_1 + \cdots + n_{pj} b_p})_\beta.
\]

The lattice points \(\beta = (b_1, \ldots, b_p) \in \mathbb{Z}_{\geq 0}^r \) in the integral part of the Mori cone \(K_{\text{eff}}(\mathbb{P}) \) correspond to the \(p \) linear relations

\[
b_1 u_{i1} + \cdots + b_i u_{im_i} = 0, \quad i = 1, \ldots, p,
\]
where \(v_{j1}, \ldots, v_{jn_j}\) generate lattice \(M_j\) of rank \(d_j\) (\(1 \leq j \leq p\)). Therefore we set \(y_i := a_{i1} \cdots a_{i n_i}.\) Using the property of the integral
\[
\left(\frac{1}{2\pi i}\right)^p \int_{\gamma_\rho} z_1^{m_1-1} \cdots z_p^{m_p-1} \, dz = \begin{cases}
1, & m_1 = \cdots = m_p = 0, \\
0, & \text{otherwise},
\end{cases}
\]
where \(\gamma_\rho = \{ |z_1| = \cdots = |z_p| = \rho \}\) is the cycle winding around the origin (\(\rho > 0\) is small) and the fact that the intersection numbers on \(\mathbb{P}\) are
\[
\langle [H_1]^i \cdots [H_p]^j \rangle_\beta = \begin{cases}
1, & l_j = n_j b_j + d_j, \quad j = 1, \ldots, r, \\
0, & \text{otherwise},
\end{cases}
\]
we can represent the functions \(I(x^k, \beta)\) by integrals
\[
I(x^k, \beta) = \left(\frac{1}{2\pi i}\right)^p \int_{\gamma_\rho} z_1^{k_1} \cdots z_p^{k_p} \prod_{j=1}^r (n_{ij} z_1 + \cdots + n_{pj} z_p)^{n_{ij} b_j + \cdots + n_{pj} b_p} \, dz \\
\frac{z_1^{n_1 b_1 + d_1 + 1} \cdots z_p^{n_p b_p + d_p + 1}}{z_1^{n_1 b_1 + d_1 + 1} \cdots z_p^{n_p b_p + d_p + 1}}.
\]

Denote
\[
F_i(z) := \prod_{j=1}^r (n_{ij} z_1 + \cdots + n_{pj} z_p)^{n_{ij}}, \quad i = 1, \ldots, p.
\]
If \(z \in \gamma_\rho\) for some fixed \(\rho\), then the geometric series
\[
z_1^{k_1 - n_1} \cdots z_p^{k_p - n_p} \sum_{b_1, \ldots, b_p \geq 0} \left(\frac{F_1(z) y_1}{z_1^{n_1}}\right)^{b_1} \cdots \left(\frac{F_p(z) y_p}{z_p^{n_p}}\right)^{b_p} = \prod_{i=1}^p \left(\frac{z_1^{k_1} \cdots z_p^{k_p}}{z_i^{n_i} - F_i(z) y_i}\right)
\]
converges absolutely and uniformly for all \(y\) from the neighbourhood \(U_\varepsilon = \{ y : ||y|| < \varepsilon \}\), where \(0 < \varepsilon < \min_{i=1, \ldots, p} (\rho^i / M_i)\), \(M_i = \max_{z \in U_\rho} |F_i(z)|\). Integrating the last expression and changing the order of integration and summation, we get
\[
I_{x^k}(y) = \left(\frac{1}{2\pi i}\right)^p \int_{\gamma_\rho} z_1^{k_1} \cdots z_p^{k_p} \, dz_1 \wedge \cdots \wedge dz_p \\
\prod_{i=1}^p \left(\frac{z_i^{n_i} - F_i(z) y_i}{z_i^{n_i} - F_i(z) y_i}\right).
\]
The cycle \(\gamma_\rho\) for fixed \(y \in U_\varepsilon\) can be replaced by its homologous by Rouché's principle for residues (see [Ts, Chapter 2, §8] or [AY, Lemma 4.9])
\[
\gamma_\rho \sim \Gamma = \{ z : |z_1^{n_1} - F_1(z) y_1| = \cdots = |z_p^{n_p} - F_p(z) y_p| = \delta \}.
\]
Therefore, we have
\[
I_{x^k}(y) = \left(\frac{1}{2\pi i}\right)^p \int_{\Gamma} z_1^{k_1} \cdots z_p^{k_p} \, dz_1 \wedge \cdots \wedge dz_p \\
\prod_{i=1}^p \left(\frac{z_i^{n_i} - F_i(z) y_i}{z_i^{n_i} - F_i(z) y_i}\right)
\]
which finishes the proof. \(\Box\)

The Conjecture 4.6 follows now from a general result in [BM2] which identifies
\[
\left(\frac{1}{2\pi i}\right)^p \int_{\Gamma} z_1^{k_1} \cdots z_p^{k_p} \, dz_1 \wedge \cdots \wedge dz_p \\
\frac{G_1(z) \cdots G_p(z)}{z_1^{n_1} \cdots z_p^{n_p}}
\]
with the toric residue.

7. Computation of Yukawa \((d - r)\)-point functions

Let \(\Delta = \Delta_1 + \cdots + \Delta_r\) be a nef-partition of a reflexive polytope \(\Delta\), \(A_i \subset \partial \Delta_i \cap M\) a subset containing all nonzero vertices of \(\Delta_i\) \((1 \leq i \leq r)\). We set \(A_1 \cup \cdots \cup A_r := \{v_1, \ldots, v_n\}\) and consider a \(\Delta_1 \cdots \Delta_r\)-regular sequence of Laurent polynomials

\[
f_j(t) := 1 - \sum_{i, v_i \in A_j} a_i t^{v_i} \in \mathbb{C}[t_1^{\pm 1}, \ldots, t_d^{\pm 1}], \quad j = 1, \ldots, r,
\]

which define \(r\) affine hypersurfaces

\[
Z_{f_j} := \{t \in \mathbb{T} \cong (\mathbb{C}^*)^d : f_j(t) = 0\}, \quad j = 1, \ldots, r,
\]

The compactification \(\overline{Z}_f\) in \(\mathbb{P}_\Delta\) of the affine complete intersection \(Z_f := Z_{f_1} \cap \cdots \cap Z_{f_r}\) is a \((d - r)\)-dimensional projective Calabi-Yau variety with at worst Gorenstein canonical singularities. Using the Poincaré residue mapping

\[
\text{Res} : H^d(\mathbb{T} \setminus Z_{f_1} \cup \cdots \cup Z_{f_r}) \to H^{d-r}(Z_{f_1} \cap \cdots \cap Z_{f_r})
\]

one can construct a nowhere vanishing section of the canonical bundle of \(\overline{Z}_f\) as

\[
\Omega := \text{Res} \left(\frac{1}{f_1 \cdots f_r} \frac{dt_1}{t_1} \wedge \cdots \wedge \frac{dt_d}{t_d} \right).
\]

Definition 7.1. Let \(Q(x_1, \ldots, x_n) \in \mathbb{Q}[x_1, \ldots, x_n]\) be a homogeneous polynomial of degree \(d - r\). The \(Q\)-Yukawa \((d - r)\)-point function is defined by the formula

\[
Y_Q(a_1, \ldots, a_n) := \frac{(-1)^{(d-r)(d-r-1)}}{(2\pi i)^{d-r}} \int_{Z_f} \Omega \wedge Q \left(\frac{a_1}{\partial a_1}, \ldots, \frac{a_n}{\partial a_n} \right) \Omega,
\]

where the differential operators \(a_1 \partial/a_1, \ldots, a_n \partial/a_n\) are determined by the Gauß-Manin connection. If \(\tilde{k} = (k_1, \ldots, k_r)\) is a nonnegative integral vector with \(|\tilde{k}| = d - r\) and \(Q(x_1, \ldots, x_n)\) is a \(\tilde{k}\)-homogeneous polynomial (\(\text{deg} x_j = k_i \leftrightarrow v_j \in A_i\)), then

\[
Q \left(\frac{a_1}{\partial a_1}, \ldots, \frac{a_n}{\partial a_n} \right) \Omega = (-1)^{d-r} \text{Res} \left(\frac{Q(a_1 t^{v_1}, \ldots, a_n t^{v_n}) dt_1}{f_1^{k_1+1} \cdots f_r^{k_r+1} t_1 \cdots t_d} \right).
\]

Theorem 7.2. Let \(Q(x_1, \ldots, x_n) \in \mathbb{C}[x_1, \ldots, x_n]\) be a \(\tilde{k}\)-homogeneous polynomial with \(|\tilde{k}| = d - r\). We define

\[
P(x_1, \ldots, x_n) := \prod_{j=1}^r \left(\sum_{v_i \in A_j} x_i \right) Q(x_1, \ldots, x_n).
\]
Then the Yukawa \((d - r)\)-point function is equal to the \(k\)-mixed toric residue

\[
Y_Q(a_1, \ldots, a_n) = (-1)^d \text{Res}_F^k \left(t_{d+1}^{x_{d+1}} \cdots t_{d+r}^{x_{d+r}} P(a_1 t^{v_1}, \ldots, a_n t^{v_n}) \right).
\]

Proof. We sketch only the idea of the proof. The hypersurface

\[
Z_F = \{ t_{d+1} f_1 + \cdots + t_{d+r} f_r = 1 \}
\]

in \((\mathbb{C}^*)^d \times \mathbb{C}^r\) is a \(\mathbb{C}^{r-1}\)-bundle over \((\mathbb{C}^*)^d \setminus (Z_{f_1} \cap \cdots \cap Z_{f_r})\). This fact allows to identify primitive parts of the cohomology groups \(H^{d-r}(Z_{f_1} \cap \cdots \cap Z_{f_r})\) and \(H^{d-1}(Z_F)\) together with their intersection forms. By the result of Mavlutyov [Mav], one can compute the intersection form on \(H^{d-1}(Z_F)\) using toric resides.

Example 7.3. Consider the mirror family \(V^*\) to Calabi-Yau complete intersections \(V\) of \(r\) hypersurfaces of degrees \(d_1, \ldots, d_r\), respectively in \(\mathbb{P}^d\), \(d_1 + \cdots + d_r = d + 1\). Its nef-partition can be constructed as follows. Let \(v_1, \ldots, v_d\) be a basis vectors of the lattice \(M\) and

\[
v_{d+1} := -v_1 - \cdots - v_d.
\]

We divide the set \(\{ v_1, \ldots, v_{d+1} \}\) into a disjoint union of \(r\) subsets \(A_1, \ldots, A_r\) such that \(|A_i| = d_i\). For \(j = 1, \ldots, r\), we define Laurent polynomials

\[
f_j(t) := 1 - \sum_{v_i \in A_j} a_i t^{v_i} \in \mathbb{C}[t_{d+1}^{\pm 1}, \ldots, t_d^{\pm 1}].
\]

Then the affine part of \(V^*\) is the complete intersection \(Z_f \subset T\) of hypersurfaces \(Z_{f_1}, \ldots, Z_{f_r} \subset T\) defined by polynomials \(f_1, \ldots, f_r\). The Yukawa coupling for \(V^*\) has been computed in [BvS, Proposition 5.1.2]:

\[
Y_Q(y) = \frac{d_1 \cdots d_r Q(1, \ldots, 1)}{1 - \mu y},
\]

where \(y = a_1 \cdots a_n\) and \(\mu = \prod_{i=1}^r d_i^{d_i}\).

Example 7.4. Consider Calabi-Yau varieties \(V\) obtained as complete intersection of hypersurfaces \(V_1, V_2, V_3\) in \(\mathbb{P}^3 \times \mathbb{P}^3\) of degrees \((3,0), (0,3)\) and \((1,1)\) respectively of type

\[
\begin{pmatrix}
\mathbb{P}^3 & 0 & 3 & 1 \\
0 & \mathbb{P}^3 & 3 & 1
\end{pmatrix}.
\]

Let \(M \cong \mathbb{Z}^6\) and \(\nabla^* = \text{conv}(\Delta_1 \cup \Delta_2 \cup \Delta_3) \subset M_{\mathbb{R}}\) be a reflexive polytope defined by the polytopes \(\Delta_1 := \text{conv}\{0, v_1, v_2, v_3\}, \Delta_2 := \text{conv}\{0, v_5, v_6, v_7\}\) and \(\Delta_3 := \text{conv}\{0, v_4, v_8\}\), where

\[
\begin{align*}
v_1 &= (1, 0, 0, 0, 0, 0), \quad v_2 = (0, 1, 0, 0, 0, 0), \quad v_3 = (0, 0, 1, 0, 0, 0), \\
v_4 &= (-1, -1, -1, 0, 0, 0), \quad v_5 = (0, 0, 1, 0, 0, 0), \quad v_6 = (0, 0, 0, 0, 1, 0), \\
v_7 &= (0, 0, 0, 0, 0, 1), \quad v_8 = (0, 0, 0, -1, -1, -1).
\end{align*}
\]
The nef-partition $\Delta = \Delta_1 + \Delta_2 + \Delta_3$ corresponds to mirrors V^* of $V = V_1 \cap V_2 \cap V_3$. We define the disjoint sets: $A_1 := \{v_1, v_2, v_3\}$, $A_2 := \{v_5, v_6, v_7\}$, $A_3 := \{v_4, v_8\}$ and the Laurent polynomials

$$f_1(t) := 1 - \sum_{i : v_i \in A_1} a_i t^{v_i} = 1 - a_1 t_1 - a_2 t_2 - a_3 t_3,$$

$$f_2(t) := 1 - \sum_{i : v_i \in A_2} a_i t^{v_i} = 1 - a_5 t_4 - a_6 t_5 - a_7 t_6,$$

$$f_3(t) := 1 - \sum_{i : v_i \in A_3} a_i t^{v_i} = 1 - a_4^{t_1^{-1}} t_2^{-1} t_3^{-1} - a_8^{t_4^{1-1}} t_5^{1-1} t_6^{1-1}.$$

The complete intersection $Z_f := Z_{f_1} \cap Z_{f_2} \cap Z_{f_3}$ of the affine hypersurfaces

$$Z_{f_j} = \{ t \in (\mathbb{C}^*)^6 : f_j(t) = 0 \}, \quad j = 1, 2, 3$$

is an affine part of V^*.

Denote by $y_1 = 3^3 a_1 a_2 a_3 a_4$, $y_2 = 3^3 a_5 a_6 a_7 a_8$ the new variables and by $\theta_1 := y_1 \partial / \partial y_1$, $\theta_2 := y_2 \partial / \partial y_2$ the corresponding logarithmic partial derivations. Given a form-residue

$$\Omega := \text{Res} \left(\frac{1}{f_1 f_2 f_3} \frac{dt_1}{t_1} \wedge \cdots \wedge \frac{dt_6}{t_6} \right) \in H^2(Z_f),$$

we compute the 2-parameter Yukawa couplings defined as integrals

$$Y^{(k_1, k_2)}(y_1, y_2) = \frac{-1}{(2\pi i)^3} \int_{Z_f} \Omega \wedge \theta_1^{k_1} \theta_2^{k_2} \Omega, \quad k_1 + k_2 = 3.$$

Proposition 7.5. The Yukawa couplings are

$$Y^{(3,0)}(y_1, y_2) = \frac{9 y_1}{(1 - y_1 - y_2)(1 - y_1)^2}, \quad Y^{(2,1)}(y_1, y_2) = \frac{9}{(1 - y_1 - y_2)(1 - y_1)^2},$$

$$Y^{(1,2)}(y_1, y_2) = \frac{9 y_2}{(1 - y_1 - y_2)(1 - y_2)^2}, \quad Y^{(0,3)}(y_1, y_2) = \frac{9 y_2}{(1 - y_1 - y_2)(1 - y_2)^2}.$$

Remark 7.6. Note that the functions in Proposition 7.5 are completely consistent with Yukawa couplings from [BvS, §8.3]. Indeed, if we put $K(y_1, y_2) = Y^{(3,0)} + 3Y^{(2,1)} + 3Y^{(1,2)} + Y^{(0,3)}$ and consider restriction to the diagonal subfamily $y = y_1 = y_2$, then we get the same expression as in [BvS]:

$$K(y, y) = \frac{18(3 - 2y)}{(1 - 2y)(1 - y)^2}.$$

Denote by $F(t) := t_1 f_1(t) + t_2 f_2(t) + t_3 f_3(t)$ the Cayley polynomial associated with Laurent polynomials f_1, f_2, f_3, and by $\tilde{\Delta} = \Delta_1 * \Delta_2 * \Delta_3 \subset \tilde{M}_R = M_R \oplus \mathbb{R}^3$ its supporting polytope which is the Cayley polytope associated with $\Delta_1, \Delta_2, \Delta_3$.
Proposition 7.7. Let $\Delta := \Delta \cap \bar{M}$ and $F(t)$ be the Cayley polynomial as above. Then the principal A-determinant of F has the form

$$E_A(F) = (a_1 \cdots a_8)^2 (1 - y_1)^3 (1 - y_1)^3 (1 - y_1 - y_2).$$

Remark 7.8. It is easy to see that the products of $Y^{(k_1, k_2)}$ by $E_A(F)$ are polynomials in a_1, \ldots, a_8.

Let us find the generating function $I_P(y)$ for the monomial $P(x) = x_1^{b_1} x_2^{b_2}$. There are two linear independent integral relations between v_1, \ldots, v_8:

$$v_1 + \cdots + v_4 = 0, \quad v_5 + \cdots + v_8 = 0.$$

Hence the Mori cone $K_{\text{eff}}(\mathbb{P})$ is spanned by the vectors

$$l^{(1)} = (1, 1, 1, 1, 0, 0, 0, 0), \quad l^{(2)} = (0, 0, 0, 0, 1, 1, 1, 1)$$

and the Morrison-Plesser moduli spaces are $\mathbb{P}_\beta = \mathbb{P}^{4b_1+3} \times \mathbb{P}^{4b_2+3}$ ($b_1, b_2 \in \mathbb{Z}_{\geq 0}$). The cohomology ring of \mathbb{P}_β is generated by two hyperplane classes: $[H_1]$ and $[H_2]$. We set $E_1 := 3[H_1]$, $E_2 := 3[H_2]$ and $E_3 := [H_1] + [H_2]$. Then the nef-partition of the anticanonical divisor $-K_\mathbb{P}$ corresponding to the nef-partition $\Delta = \Delta_1 + \Delta_2 + \Delta_3$ is defined by $-K_\mathbb{P} = E_1 + E_2 + E_3$. Therefore, the Morrison-Plesser cohomology class associated with the nef-partition of $-K_\mathbb{P}$ equals

$$\Phi_\beta = (3[H_1])^{3b_1} (3[H_2])^{3b_2} ([H_1] + [H_2])^{b_1+b_2}$$

and the generating function for intersection numbers can be written

$$I_P(y) = \sum_{b_1, b_2 \geq 0} \langle [H_1]^{b_1+3b_2+1} [H_2]^{b_2+3b_1+1} ([H_1] + [H_2])^{b_1+b_2+1} \rangle y_1^{b_1} y_2^{b_2}.$$

Intersection theory on \mathbb{P}_β implies

$$I_P(y) = 9 \sum_{b_1, b_2 \geq 0} \frac{(b_1 + b_2 + 1)!}{(b_1 - k_1 + 2)!(b_2 - k_2 + 2)!} y_1^{b_1} y_2^{b_2}.$$

By Theorem 6.1 we can write $I_P(y)$ as the integral

$$I_P(y) = \frac{1}{(2\pi i)^2} \int_{\Gamma} \frac{9 z_1^{b_1+1} z_2^{b_2+1} (z_1 + z_2) dz_1 \wedge dz_2}{(z_1^3 - z_2^3 (z_1 + z_2) y_1) (z_2^3 - z_1^3 (z_1 + z_2) y_2)}$$

with the cycle $\Gamma = \{(z_1, z_2) \in \mathbb{C}^2 : |z_1^3 - z_2^3 (z_1 + z_2) y_1| = \varepsilon_1, |z_2^3 - z_1^3 (z_1 + z_2) y_2| = \varepsilon_2\}$, $\varepsilon_1, \varepsilon_2 > 0$. Computing the last integrals, we get the same rational functions as in Proposition 7.5.

Example 7.9. Consider an example of Calabi-Yau variety V obtained as complete intersections of two hypersurfaces of degrees $(4, 0)$, $(1, 2)$ in $\mathbb{P} = \mathbb{P}^4 \times \mathbb{P}^1$ which corresponds to the configuration

$$\begin{pmatrix} \mathbb{P}^4 & \mid & 4 & 1 \\ \mathbb{P}^1 & \mid & 0 & 2 \end{pmatrix}.$$
This example was investigated in details by Hosono, Klemm, Theisen and Yau (cf. [HKTY]). The corresponding nef-partition $\Delta = \Delta_1 + \Delta_2 \subset M_\mathbb{R} \cong \mathbb{R}^5$ consists of polytopes $\Delta_1 := \text{conv}\{0, v_1, v_2, v_3, v_4\}$ and $\Delta_2 := \text{conv}\{0, v_5, v_6, v_7\}$, where

$v_1 = (1, 0, 0, 0, 0), \quad v_2 = (0, 1, 0, 0, 0), \quad v_3 = (0, 0, 1, 0, 0), \quad v_4 = (0, 0, 0, 1, 0),

v_5 = (-1, -1, -1, -1, 0), \quad v_6 = (0, 0, 0, 0, 1), \quad v_7 = (0, 0, 0, 0, -1).

We have two disjoint sets: $A_1 := \{v_1, v_2, v_3, v_4\}$ and $A_2 := \{v_5, v_6, v_7\}$ which are the vertices of the reflexive polytope ∇^* and define the Laurent polynomials

$$f_1(t) = 1 - \sum_{i : v_i \in A_1} a_i t^{v_i} = 1 - a_1 t_1 - a_2 t_2 - a_3 t_3 - a_4 t_4,$$

$$f_2(t) = 1 - \sum_{i : v_i \in A_2} a_i t^{v_i} = 1 - a_5 (t_1 t_2 t_3 t_4)^{-1} - a_6 t_5 - a_7 t_5^{-1}.$$

Denote by $y_1 := a_1 \cdots a_5, y_2 := a_6 a_7$ the new variables and $\theta_1 := y_1 \partial / \partial y_1, \theta_2 := y_2 \partial / \partial y_2$ the corresponding logarithmic partial derivations. Let Ω be a form defined by

$$\Omega := \text{Res} \left(\frac{1}{f_1 f_2} \frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2} \right) \in H^3(Z_{f_1} \cap Z_{f_2}).$$

Then the Yukawa coupling associated with f_1, f_2 is the integral

$$Y^{(k_1, k_2)}(y_1, y_2) := \frac{-1}{(2\pi i)^3} \int_{Z_f} \Omega \wedge \theta_1^{k_1} \theta_2^{k_2} \Omega, \quad k_1 + k_2 = 3,$$

where $Z_f := Z_{f_1} \cap Z_{f_2}$ is an affine Calabi-Yau complete intersection which compactification forms a mirror dual family to V.

Proposition 7.10. [HKTY] The Yukawa couplings $Y^{(k_1, k_2)}(y)$ are:

$$Y^{(3,0)}(y) = \frac{8}{D_0}, \quad Y^{(2,1)}(y) = \frac{4(1 - 256y_1 + 4y_2)}{D_0 D_1},$$

$$Y^{(1,2)}(y) = \frac{8y_2(3 - 512y_1 + 4y_2)}{D_0 D_1^2},$$

$$Y^{(0,3)}(y) = \frac{4y_2(1 - 256y_1 + 24y_2 - 3072y_1 y_2 + 16y_2^2)}{D_0 D_1^3}.$$

Let $F(t) := t_6 f_1(t) + t_7 f_2(t)$ be the Cayley polynomial associated with $f_1(t)$ and $f_2(t)$. Its support polytope is the Cayley polytope $\tilde{\Delta} = \Delta_1 \ast \Delta_2 \subset \bar{M}_\mathbb{R} = M_\mathbb{R} \oplus \mathbb{R}^2$ which is the convex hull of the vectors:

$u_1 = (0, 0, 0, 0, 1, 0), \quad u_2 = (1, 0, 0, 0, 0, 1, 0), \quad u_3 = (0, 1, 0, 0, 0, 1, 0),

u_4 = (0, 0, 1, 0, 0, 1, 0), \quad u_5 = (0, 0, 0, 1, 0, 1, 0), \quad u_6 = (0, 0, 0, 0, 0, 0, 1),

u_7 = (-1, -1, -1, -1, 0, 0, 1), \quad u_8 = (0, 0, 0, 0, 1, 0, 1), \quad u_9 = (0, 0, 0, 0, -1, 0, 1).$
Proposition 7.11. Let \(A := \{u_1, \ldots, u_9\} \subset \widetilde{M} \) and
\[
D_0 := (1 - 256y_1)^2 - 4y_2, \quad D_1 := 1 - 4y_2.
\]
Then the principal \(A \)-determinant of \(F(t) \) has the following form:
\[
E_A(F) = \begin{array}{l}
-640a_1^8a_2^8a_3^8a_4^8a_5^8a_6^8a_7^8 - 16777216a_1^{10}a_2^{10}a_3^{10}a_4^{10}a_5^{10}a_6^8a_7^8 + \\
160a_1^8a_2^8a_3^8a_4^8a_5^8a_6^8a_7^7 + 16777216a_1^{10}a_2^{10}a_3^{10}a_4^{10}a_5^{10}a_6^8a_7^8 + \\
65536a_1^{10}a_2^{10}a_3^{10}a_4^8a_5^{10}a_6^5a_7^5 + 6291456a_1^{10}a_2^{10}a_3^{10}a_4^{10}a_5^{10}a_6^7a_7^7 - \\
1048576a_1^{10}a_2^{10}a_3^{10}a_4^{10}a_5^{10}a_6^6a_7^6 - 1024a_1^8a_2^8a_3^8a_4^8a_5^8a_6^6a_7^6 + \\
1280a_1^8a_2^8a_3^8a_4^8a_5^8a_6^9a_7^9 - 512a_1^8a_2^8a_3^8a_4^8a_5^8a_6^5a_7^5 - \\
20a_1^8a_2^8a_3^8a_4^8a_5^8a_6^6a_7^6 + 131072a_1^8a_2^8a_3^8a_4^8a_5^8a_6^6a_7^8 + \\
a_1^8a_2^8a_3^8a_4^8a_5^8a_6^5a_7^5 + 8192a_1^8a_2^8a_3^8a_4^8a_5^8a_6^6a_7^6 - \\
49152a_1^8a_2^8a_3^8a_4^8a_5^8a_6^7a_7^7 - 131072a_1^8a_2^8a_3^8a_4^8a_5^8a_6^6a_7^9,
\end{array}
\]
where the terms corresponding to the vertices of Newton polytope of \(E_A(F) \) are underlined.

Proof. The principal \(A \)-determinant can be found by using the algorithm proposed by A. Dickenstein and B. Sturmfels [DS] via the computation of the corresponding Chow forms. \(\square \)

Remark 7.12. We note that \(D_0 \) is the principal component of the discriminant locus \(E_A(F) = 0 \) and the component \(D_1 \) corresponds to the edge \(\Gamma \) of \(\widetilde{M} \) with
\[
\Gamma \cap \widetilde{M} = \{u_6, u_8, u_9\} = \{(0, 0, 0, 0, 0; 0, 1), (0, 0, 0, 1; 0, 1), (0, 0, 0, -1; 0, 1)\}.
\]

The Newton polytope of \(E_A(F) \) is the secondary polytope \(\text{Sec}(A) \) depicted in Figure 1. The vertices of \(\text{Sec}(A) \) are in one-to-one correspondence with coherent triangulations \(T_1, \ldots, T_4 \) of \(\widetilde{\Delta} \) which are:

\[
T_1 = \{(u_1, u_3, u_4, u_5, u_5, u_7, u_9), (u_1, u_2, u_4, u_5, u_6, u_7, u_8), (u_1, u_2, u_3, u_5, u_6, u_7, u_8), (u_1, u_2, u_3, u_4, u_5, u_6, u_7, u_8), (u_2, u_3, u_4, u_5, u_6, u_7, u_8)\},
\]

\[
T_2 = \{(u_1, u_3, u_4, u_5, u_7, u_8, u_9), (u_1, u_2, u_4, u_5, u_7, u_8, u_9), (u_1, u_2, u_3, u_5, u_7, u_8, u_9), (u_1, u_2, u_3, u_4, u_5, u_7, u_8, u_9)\},
\]

\[
T_3 = \{(u_1, u_2, u_4, u_5, u_7, u_8, u_9), (u_1, u_2, u_3, u_4, u_5, u_7, u_8, u_9)\},
\]

\[
T_4 = \{(u_1, u_2, u_3, u_4, u_5, u_7, u_9), (u_1, u_2, u_3, u_4, u_5, u_7, u_9), (u_2, u_3, u_4, u_5, u_6, u_7, u_9)\}.
\]
THEOREM 1. Secondary polytope and coherent triangulations

The generating function $I_P(y)$ for intersection numbers corresponding to the monomial $P(x) = x_1^{b_1}x_2^{b_2}$ can be computed from the intersection theory on the Morrison-Plesser moduli spaces. Using two independent integral relations between v_1, \ldots, v_7

$$v_1 + \cdots + v_5 = 0, \quad v_6 + v_7 = 0,$$

we see that the Mori cone $K_{\text{eff}}(\mathbb{P})$ is spanned by two vectors

$$l^{(1)} = (1, 1, 1, 1, 0, 0, 0), \quad l^{(2)} = (0, 0, 0, 0, 0, 1, 1).$$

The Morrison-Plesser moduli spaces are $\mathbb{P}_\beta = \mathbb{P}^{b_1+4} \times \mathbb{P}^{2b_2+1}$ $(b_1, b_2 \in \mathbb{Z}_{\geq 0})$. The cohomology of \mathbb{P}_β are generated by the hyperplane classes $[H_1]$ and $[H_2]$. Let $E_1 := [H_1] + 2[H_2]$ and $E_2 := 4[H_1]$. Then the nef-partition $\Delta = \Delta_1 + \Delta_2$ of polytopes induces the nef-partition of the anticanonical divisor

$$-K_\mathbb{P} = E_1 + E_2 = ([H_1] + 2[H_2]) + (4[H_1]).$$

It is straightforward to see that the corresponding Morrison-Plesser class is

$$\Phi_\beta = ([H_1] + 2[H_2])^{b_1+2b_2}(4[H_1])^{4b_1}.$$

So we get

$$I_P(y) = \sum_{b_1,b_2 \geq 0} \langle [H_1]^{b_1}[H_2]^{b_2}([H_1] + 2[H_2])^{b_1+2b_2+1}(4[H_1])^{4b_1+1} \rangle_\beta y_1^{b_1}y_2^{b_2}.$$

Using the intersection theory on \mathbb{P}_β, we obtain

$$I_P(y) = \sum_{b_1,b_2 \geq 0} 2^{8b_1+2b_2-k_2+3} \frac{(b_1 + 2b_2 + 1)!}{(b_1 - k_1 + 3)(2b_2 - k_2 + 1)!} y_1^{b_1}y_2^{b_2}.$$

By Theorem 6.1 the function $I_P(y)$ admits the integral representation:

$$I_P(y) = \frac{1}{(2\pi i)^2} \int \frac{4z_1^{k_1+1}z_2^{k_2} (z_1 + 2z_2) dz_1 \wedge dz_2}{(z_1^5 - (z_1 + 2z_2)(4z_1)^4y_1)(z_2^2 - (z_1 + 2z_2)^2y_2)}$$
with the cycle

\[\Gamma = \{(z_1, z_2) \in \mathbb{C}^2 : |z_1^5 - (z_1 + 2z_2) (4z_1)^4 y_1| = \varepsilon_1, |z_2^2 - (z_1 + 2z_2)^2 y_2| = \varepsilon_2\}, \]

where \(\varepsilon_1, \varepsilon_2\) are positive. These integrals can be easily computed and yield the same rational functions as in Proposition 7.10.

REFERENCES

[Bat] V.V. Batyrev, Quantum cohomology rings of toric manifolds, Asterisque 218 (1993), 9–34.

[Bo] L.A. Borisov, Towards the mirror symmetry for Calabi-Yau complete intersections in Gorenstein toric Fano varieties.

Mathematisches Institut, Universität Tübingen, Auf der Morgenstelle 10, Tübingen
D-72076, Germany
E-mail address: victor.batyrev@uni-tuebingen.de

Mathematisches Institut, Universität Tübingen, Auf der Morgenstelle 10, Tübingen
D-72076, Germany
E-mail address: evgeny.materov@uni-tuebingen.de