The vertex degree distribution of random intersection graphs

Dudley Stark
School of Mathematical Sciences
Queen Mary, University of London
London E1 4NS U.K.

December 3, 2002

ROUGH DRAFT: NOT FOR CIRCULATION

Abstract

Random intersection graphs are a model of random graphs in which each vertex is assigned a subset of a set of objects independently and two vertices are adjacent if their assigned subsets are not disjoint. The number of vertices is denoted by \(n \) and the number of objects is supposed to be \([n^\alpha]\) for some \(\alpha > 0 \). We determine the distribution of the degree of a typical vertex and show that it changes sharply between \(\alpha < 1 \), \(\alpha = 1 \), and \(\alpha > 1 \).

1 Introduction

Random intersection graphs were introduced in [4]. Given a set \(V \) of \(n \) vertices and a set \(W \) of \(m \) objects, define a bipartite graph \(G^*(n, m, p) \) with independent vertex sets \(V \) and \(W \) and edges between \(v \in V \) and \(w \in W \) existing independently and with probability \(p \). The random intersection graph \(G(n, m, p) \) derived from \(G^*(n, m, p) \) is defined on the vertex set \(V \) with vertices \(v_1, v_2 \in V \) adjacent if and only if there exists some \(w \in W \) such that
both v_1 and v_2 are adjacent to w in $G^*(n, m, p)$. We may interpret the vertices of $W_v \subset W$ adjacent to $v \in V$ as a random subset of W, in which case two vertices $v_1, v_2 \in V$ are adjacent iff $W_{v_1} \cap W_{v_2} \neq \emptyset$.

The properties of $G(n, m, p)$ were studied in [1, 4] and contrasted with the well known random graph model $G(n, p)$, in which vertices are made adjacent to each other independently and with probability p. In [1, 4] the number of objects m is taken to be $m = \lfloor n^\alpha \rfloor$ for a fixed $\alpha > 0$. It is found in [4] that the thresholds for the existence of small subgraphs in $G(n, m, p)$ show different behaviors from what is seen in $G(n, p)$. When $\alpha > 6$ [1] showed that the total variation distance between the distributions of $G(n, m, p)$ and $G(n, p)$ converges to 0 when \hat{p} is defined appropriately.

Intersection graphs can be viewed as relationship graphs. For example, if V represents mathematicians and W represents mathematics papers, and an edge is put between $v \in V$ and $w \in W$ iff mathematician v was an author of paper w, then the resulting intersection graph is the collaboration graph on V, where two mathematicians are connected by an edge iff they have written a paper together. The roles of V and W can be interchanged, in which case two papers are adjacent iff they have an author in common. The random graph $G(n, m, p)$ is dual in this way to $G(m, n, p)$. If $m = \lfloor n^\alpha \rfloor$, then $n \in [m^{1/\alpha}, (m + 1)^{1/\alpha})$ and so the dual of $G(n, m, p)$ with $\alpha = \beta > 1$ is basically $G(n, m, p)$ with $\alpha = \beta^{-1} < 1$. Data sets for relationship graphs and models of random intersection graphs with fixed degree sequences are analyzed in [5].

Interest was expressed in [1] in further understanding the differences between $G(n, m, p)$ and $G(n, p)$. In [1, 4] thresholds for various quantities were looked at, but not much attention was paid to limiting distributions. A fundamental quantity that has not been studied for random intersection graphs is the distribution of the degree of a typical vertex. We give the precise distribution for $G(n, m, p)$ in the form of a probability generating function in Theorem 1. The corresponding distribution for $G(n, p)$ is, of course, Binomial$(n - 1, p)$.

Let $X = X(n, m, p)$ be the number of vertices $V - \{v\}$ adjacent in $G(n, m, p)$ to a vertex $v \in V$. The probability generating function of $X(n, m, p)$ is defined to be $E x^X = \sum_{k=0}^{\infty} \mathbb{P}(X = k)x^k$.

2
Theorem 1 The probability generating function \(F(x) = \mathbb{E}x^X \) is given by
\[
F(x) = \sum_{j=0}^{n-1} \binom{n-1}{j} x^j (1-x)^{n-1-j} \left[1 - p + p(1-p)^{n-1-j} \right]^m.
\]

Theorem 1 is proved by using a generating function version of the sieve method.

The expectation of \(X \) is given by
\[
\mathbb{E}X = (n-1) \left[1 - (1-p^2)^m \right] \tag{1}
\]
because the expression in square brackets is the probability that two vertices \(v, v_1 \) in \(V \) are simultaneously adjacent to some vertex \(w \in W \) in \(\mathcal{G}^*(n, m, p) \).

The derivative \(F'(1) \) also gives (1). If we let
\[
p = \sqrt{cn^{-(1+\alpha)/2}},
\]
then
\[
\mathbb{E}X = (n-1) \left[1 - (1 - mp^2 + O(mp^4)) \right] = c + o(1).
\]

With respect to vertex degree, defining \(p = p(n) \) by (2) for \(\mathcal{G}(n, p) \) is therefore analogous to defining \(p = cn^{-1} \) for \(\mathcal{G}(n, p) \).

The vertex degree distribution for \(\mathcal{G}(n, p) \) converges to the Poisson distribution with parameter \(c \) as \(n \to \infty \) when \(p = cn^{-1} \). With \(p = \sqrt{cn^{-(1+\alpha)/2}} \) the vertex degree distribution of \(\mathcal{G}(n, m, p) \) converges to a Poisson distribution in the limit if and only if \(\alpha > 1 \). We say that \(X_n \) is asymptotically almost surely \(a_n \) if \(\mathbb{P}(|X_n/a_n - 1| > \epsilon) \to 0 \) as \(n \to \infty \) for each \(\epsilon > 0 \).

Theorem 2 Let \(\mathcal{G}(n, m, p) \) denote the random intersection graph with \(m = \lfloor n^{\alpha} \rfloor \) and \(p = \sqrt{cn^{-(1+\alpha)/2}} \).

(i) If \(\alpha < 1 \), then the number of non-isolated vertices is asymptotically almost surely \(\sqrt{cn^{(1+\alpha)/2}} = o(n) \). It follows that the degree of a fixed vertex in \(V \) has a distribution which converges to \(\delta_0 \), the probability distribution with all mass at 0.

(ii) If \(\alpha = 1 \), then the degree of a fixed vertex in \(V \) has a distribution which converges weakly to the compound Poisson distribution of the random variable \(Z_1 + Z_2 + \cdots + Z_N \), where \(N, Z_1, Z_2, \ldots \) are i.i.d. Poisson(\(\sqrt{c} \)) random variables.
(iii) If $\mathcal{G}(n, m, p)$ with $\alpha > 1$ and $p = \sqrt{c}n^{-(1+\alpha)/2}$, then the degree of a fixed vertex has distribution which converges weakly to a Poisson limiting distribution with parameter c.

Theorem 2 can roughly be explained in the following way. When $\alpha < 1$ the probability in $\mathcal{G}(n, m, p)$ that any one vertex $v \in V$ is connected to a vertex in W goes to 0 and so the degree distribution in $\mathcal{G}(n, m, p)$ converges to δ_0 and most of the vertices are isolated. When $\alpha = 1$ a vertex $v \in V$ will have approximately a Poisson(\sqrt{c}) number of neighbors in W and each of those neighbors have independently about Poisson(\sqrt{c}) number of neighbors in V, not including v. When α is large enough, [1] shows that it becomes unlikely that a vertex $w \in W$ has more than two neighbors in V and as a result the events that different edges in $\mathcal{G}(n, m, p)$ exist become independent.

Theorem 3 shows that if $\alpha > 1$ and p grows faster than $n^{-(1+\alpha)/2}$, but not as fast as $\min\left(n^{-2/3-\alpha/3}, n^{-1/3-\alpha/2}\right)$, then X converges to normal when it is rescaled.

Theorem 3 Let $\mathcal{G}(n, m, p)$ denote the random intersection graph with $m = \lfloor n^\alpha \rfloor$, suppose that $\alpha > 1$, and suppose that p satisfies $nm\mathbb{E}p^2 \to \infty$ and $p = o(n^{-2/3-\alpha/3})$ if $1 < \alpha \leq 2$, $p = o\left(n^{-1/3-\alpha/2}\right)$ if $\alpha > 2$. Under these assumptions,

$$\frac{X - \mathbb{E}X}{\sigma(X)} \Rightarrow N(0, 1),$$

where $\sigma(X)$ is the standard deviation of X and $N(0, 1)$ is the standard normal distribution.

The formula in Theorem 1 is derived in Section 2. In Section 3 Theorem 2 is proven for $\alpha < 1$ by using Chebyshev’s inequality. Section 4 proves Theorem 2 for $\alpha \geq 1$ and Theorem 3 by analyzing the probability generating function found in Section 2.

2 The probability generating function

We will determine $F(x)$ by using Lemma 1, which is a probability generating function version of the sieve method. Lemma 1 is used, for example, by Takács in [7], though according to [3] it may also have been known to Jordan. For completeness we give a proof of Lemma 1. It is similar to an argument in
Section 4.2 of [8]. Let P be a set of properties that a random object can take on. Let p_k be the probability that the object takes on exactly k properties in P. We are interested in the probability generating function

$$F(x) = \sum_k p_k x^k.$$

Lemma 1 For $S \subseteq P$, we define N_S to be the event that the random object possesses the properties S. Define N_r to be

$$N_r = \sum_{|S|=r} \mathbb{P}(N_S)$$

and define $N(x)$ to be

$$N(x) = \sum_{r \geq 0} N_r x^r.$$

With the definitions above, we have

$$F(x) = N(x - 1).$$

Proof The proof is similar to the argument in Section 4.2 of [8], but replacing certain summations with expectations. Let I_{N_S} be the indicator function of the event N_S. Let Y be the number of properties that the random object possesses. We have

$$N_r = \sum_{|S|=r} \mathbb{P}(N_S) = \sum_{|S|=r} \mathbb{E}(I_{N_S}) = \mathbb{E} \left(\sum_{|S|=r} I_{N_S} \right) = \mathbb{E} \left(\binom{Y}{r} \right).$$

Therefore,

$$N(x) = \sum_{r \geq 0} N_r x^r = \sum_{r \geq 0} \mathbb{E} \left(\binom{Y}{r} x^r \right) = \mathbb{E} \left((1 + x)^Y \right) = F(1 + x)$$

and $F(x) = N(x - 1)$.

In our application to random intersection graphs, there are $n - 1$ properties consisting of the non-adjacency of the fixed vertex to the other $n - 1$
vertices. We use non-adjacency rather than adjacency in the initial analysis for ease of calculation; the generating function for the number of adjacent vertices follows immediately.

Proof of Theorem 1

Let $G(x)$ be the generating function of p^k, the probability that exactly k vertices in $V - \{v\}$ are not adjacent to $v \in V$. The probability that the fixed vertex v is adjacent to none of the vertices represented by $S \subset V - \{v\}$ is given by

$$P(N_S) = \sum_{k=0}^{m} \binom{m}{k} p^k (1-p)^{m-k} (1-p)^{k|S|},$$

where the index k counts the number of elements of W adjacent to v in $G^*(n, m, p)$. Therefore,

$$N_r = \binom{n-1}{r} \sum_{k=0}^{m} \binom{m}{k} [p(1-p)^r]^k (1-p)^{m-k}$$

$$= \binom{n-1}{r} [1 - p + p(1-p)^r]^m.$$

Lemma 1 implies that $G(x) = N(x - 1)$, where

$$N(x) = \sum_{r=0}^{n-1} N_r x^r = \sum_{r=0}^{n-1} \binom{n-1}{r} x^r [1 - p + p(1-p)^r]^m.$$

Hence,

$$G(x) = \sum_{r=0}^{n-1} \binom{n-1}{r} (x-1)^r [1 - p + p(1-p)^r]^m$$

$$= \sum_{j=0}^{n-1} \binom{n-1}{j} (x-1)^{n-1-j} [1 - p + p(1-p)^{n-1-j}]^m.$$

Now use the identity $F(x) = x^{n-1} G(x^{-1})$. □
3 The number of isolated vertices

In this section we prove Theorem 2 for \(\alpha < 1 \).

Lemma 2 Consider a random intersection graph \(G(n, m, p) \) with \(\alpha < 1 \) and \(p = o(n^{-\alpha}) \). Let \(Y \) be the number of non-isolated vertices. If \(bmp \to \infty \), then asymptotically almost surely \(Y \sim bmp \). In particular, if \(\alpha < 1 \) and \(p = \sqrt{c}n^{-(1+\alpha)/2} \), then \(Y \sim \sqrt{c}n^{(1+\alpha)/2} = o(n) \).

Proof Write \(W = \sum_{v \in V} I_v \), where \(I_v \) is the indicator that vertex \(v \in V \) is isolated, so that the number of non-isolated vertices is \(Y = n - W \). The probability that \(v \) is isolated is

\[
\mathbb{E}I_v = \sum_{k=0}^{m} \binom{m}{k} p^k (1-p)^{m-k} (1-p)^{(n-1)k} = \left[1 - p + p(1-p)^{n-1}\right]^m,
\]

where the index \(k \) represents the number of vertices in \(W \) which are adjacent to \(v \) in \(G^*(n, m, p) \). Hence

\[
\mathbb{E}W = n \left[1 - p + p(1-p)^{n-1}\right]^m,
\]

a formula computed in [6] by different means. When \(\alpha < 1 \) and \(p = o(n^{-\alpha}) \) the expectation of \(Y \) is

\[
\mathbb{E}Y = n - \mathbb{E}W = n - n \left[1 - p + p(1-p)^{n-1}\right]^m = n - n (1-p)^m \left(1 + O(mpe^{-(n-2)p})\right) = n - n (1-p)^m \left(1 + O(mp \exp(-n^{1-\alpha}))\right) = nmp + O(nm^2p^2).
\]

Next we calculate the variance of \(Y \). We have

\[
\mathbb{E}W(W - 1) = \sum_{v_2 \neq v_2} \mathbb{E}I_{v_1} I_{v_2} = n(n-1) \sum_{s=0}^{m} \binom{m}{s} (1-p)^{2s}[2p(1-p)]^{m-s}(1-p)^{(m-s)(n-2)} = n(n-1) \left[(1-p)^2 + 2p(1-p)^{n-1}\right]^m,
\]

7
where s counts the number of vertices in W adjacent to neither v_1 or v_2 in $G^*(n, m, p)$, leaving $m-s$ vertices in W adjacent to exactly one of v_1, v_2. The factor $(1-p)^{(m-s)(n-2)}$ is the probability that none of the $m-s$ vertices are adjacent to other vertices in V. Now,

$$
\text{Var}(Y) = \text{Var}(W)
= n(n-1) \left[(1-p)^2 + 2p(1-p)^{n-1} \right]^m + n \left[1 - p + p(1-p)^{n-1} \right]^m
= n(n-1)(1-p)^{2m} \left(1 + O(\exp(-n^{1-a})) \right)
+ n(1-p)^m \left(1 + O(\exp(-n^{1-a})) \right)
- n^2(1-p)^{2m} \left(1 + O(\exp(-n^{1-a})) \right)
= n(1-p)^m - n(1-2p + p^2)^m + O\left(n^2 \exp(-n^{1-a})\right)
= O(nmp).
$$

An application of Chebyshev’s inequality completes the proof. ■

4 Limit laws for the vertex degree

In this section we prove Theorem 2 for $\alpha \geq 1$ and Theorem 3.

Lemma 3 Consider the random intersection graph $G(n, m, p)$ with $m = \lfloor n^\alpha \rfloor$ and $p = \sqrt{cn^{-1+\alpha}/2}$ with $\alpha = 1$. When $x \leq 1$, the probability generating function $\sum_k \mathbb{P}(X(n, m, p) = k)x^k$ satisfies

$$F(x) = \exp\left(-\sqrt{c} + \sqrt{ce^{-\sqrt{c}(1-x)}}\right) + O(n^{-1/4})$$

It follows that the probability that a fixed vertex of V in $G(n, m, p)$ equals $k \geq 0$ asymptotically approaches the compound Poisson distribution given by $\mathbb{P}(Z_1 + Z_2 + \cdots + Z_N = k)$, where N, Z_1, Z_2, \ldots are i.i.d. Poisson(\sqrt{c}) distributed random variables.

Proof Write the formula for $F(x)$ given by Theorem 1 for fixed $x \leq 1$ as

$$F(x) = \sum_{|j-nx| \leq n^{3/4}} \left(\begin{array}{c} n-1 \\ j \end{array} \right) x^j (1-x)^{n-1-j} \left[1 - \sqrt{cn^{-1}} + \sqrt{cn^{-1}(1-\sqrt{cn^{-1}})^{n-1-j}} \right]^n$$

8
\[+ \sum_{|j-nx|>n^{3/4}} \binom{n-1}{j} x^j(1-x)^{n-1-j} \left[1-cn^{-1}+\sqrt{cn^{-1}}(1-\sqrt{cn^{-1}})^{n-1-j} \right]^n. \]

The second sum is bounded by \(\sum_{|j-nx|>n^{3/4}} \binom{n-1}{j} x^j(1-x)^{n-1-j} \), which is \(o(1) \) by large deviation bounds for the binomial; see Theorem 2.1 of [2], for example.

As for the first sum, we have
\[(1-\sqrt{cn^{-1}})^{n-1-j} = e^{-\sqrt{\sqrt{1-x}}} + O(n^{-1/4}). \]

uniformly for all \(j \) such that \(|j-nx| \leq n^{3/4} \). Hence,
\[\left[1-\sqrt{cn^{-1}}+\sqrt{cn^{-1}}(1-\sqrt{cn^{-1}})^{n-1-j} \right]^n = \exp \left(-\sqrt{c} + \sqrt{c} \exp(-\sqrt{1-x}) \right) + O(n^{-1/4}) \]

uniformly for all \(j \) such that \(|j-nx| \leq n^{3/4} \) and
\[\sum_{|j-nx|\leq n^{3/4}} \binom{n-1}{j} x^j(1-x)^{n-1-j} \left[1-\sqrt{cn^{-1}}+\sqrt{cn^{-1}}(1-\sqrt{cn^{-1}})^{n-1-j} \right]^n \]
\[= \exp \left(-\sqrt{c} + \sqrt{c} \exp(-\sqrt{1-x}) \right) + O(n^{-1/4}). \]

The Laplace transform \(F(e^{-t}) \) converges pointwise to \(\exp \left(-\sqrt{c} + \sqrt{c} \exp(-\sqrt{1-x}) \right) \)
which, as is easily checked, is the Laplace transform of \(Z_1 + Z_2 + \cdots + Z_N \).

Lemma 4 Consider the random intersection graph \(G(n,m,p) \) with \(m = \lfloor n^\alpha \rfloor \) and \(p = \sqrt{cn^{-1(1+\alpha)/2}} \) with \(\alpha > 1 \). When \(x \leq 1 \), the probability generating function \(\sum_k \mathbb{P}(X(n,m,p) = k)x^k \) satisfies
\[F(x) = e^{-c+c^x} + O(n^{-1}) + O(n^{1-\alpha)/2}). \]

It follows that the probability \(p_k \) that a fixed vertex of \(V \) in \(G(n,m,p) \) equals \(k \geq 0 \) is asymptotically Poisson: \(p_k \sim e^{-c^k} / k! \).

Proof Expand \((1-p)^{n-1-j} \) for \(j \in [1,n] \) as
\[(1-p)^{n-1-j} = 1 - \sqrt{c}(n-1-j)n^{(1+\alpha)/2} + O(n^{1-\alpha}). \]

9
It follows that
\[
[1 - p + p(1 - p)^{n-1-j}]^m = [1 - c(n - 1 - j)n^{-1-\alpha} + O\left(n^{(1-3\alpha)/2}\right)]^m
= \exp\left(-c(n - 1 - j)n^{-1} + O\left(n^{(1-\alpha)/2}\right)\right)
\]
uniformly for \(j \in [1, n] \). Now, for \(x \in [0, 1], \)
\[
F(x) = \sum_{j=0}^{n-1} \binom{n-1}{j} x^j (1-x)^{n-1-j} e^{-c(n-1-j)/n} + O\left(n^{(1-\alpha)/2}\right)
= e^{-c(n-1)/n} (1 - x + xe^{c/n})^{n-1} + O\left(n^{(1-\alpha)/2}\right)
= e^{-c(n-1)/n} \exp\left(xc(n-1)n^{-1} + O\left(n^{-1}\right)\right) + O\left(n^{(1-\alpha)/2}\right)
= e^{-c+cx} + O\left(n^{-1}\right) + O\left(n^{(1-\alpha)/2}\right).
\]
The Laplace transform \(F(e^t) \) converges pointwise to \(\exp(-c + ce^{-t}) \), the Laplace transform of the Poisson distribution with parameter \(c \). ■

Proof of Theorem 3

Suppose that \(x_n \) is a sequence of complex numbers such that \(|x_n| = O(1) \). By the assumptions on \(p \) we have \(n^2 mp^3 = o(1) \), \(nm^2 p^4 = o(1) \), \(n^2 m^2 p^5 = o(1) \), and \(n^2 m^3 p^6 = o(1) \). Therefore,
\[
(1 - p)^{n-1-j} = 1 - p(n - 1 - j) + O(n^2 p^2)
\]
and
\[
\left[1 - p + p(1 - p)^{n-1-j}\right]^m = \left[1 - p^2(n - 1 - j) + O(n^2 p^3)\right]^m
= \exp\left(-mp^2(n - 1 - j) + O(n^2 mp^3)\right)
= (1 + o(1))\exp\left(-mp^2(n - 1 - j)\right).
\]
Furthermore,
\[
F(x_n) = (1 + o(1))\sum_{j=0}^{n-1} \binom{n-1}{j} x_n^j (1-x_n)^{n-1-j} e^{-mp^2(n-1-j)}
= (1 + o(1))e^{-mp^2(n-1)} \sum_{j=0}^{n-1} \binom{n-1}{j} (x_ne^{mp^2})^j (1-x_n)^{n-1-j}
\]

10
\[
\begin{align*}
&= (1 + o(1))e^{-mp^2(n-1)}(1 + x_n(1 + x_n e^{mp^2})^{n-1} \\
&= (1 + o(1))e^{-mp^2(n-1)}(1 + x_n mp^2 + O(m^2 p^4))^{n-1} \\
&= (1 + o(1))e^{-\mu + \mu x_n},
\end{align*}
\]

with \(\mu = mp^2(n-1) \). The equality (1) shows that \(\mathbb{E}X = \mu + o(1) \). Suppose that \(\mu / \sigma(X)^2 \to 1 \) as \(n \to \infty \). Writing \(\sigma(X) \), the characteristic function of \((X - \mathbb{E}X)/\sigma \) is

\[
\begin{align*}
e^{-it\mathbb{E}X/\sigma} F(e^{it/\sigma}) &= (1 + o(1))e^{-it\mu/\sigma} F(e^{it/\sigma}) \\
&= (1 + o(1))e^{-it\mu/\sigma} \exp(-\mu + \mu e^{it/\sigma}) \\
&= (1 + o(1))e^{-it\mu/\sigma} \exp(\mu it/\sigma - \mu t^2/(2\sigma^2) + O(\mu/\sigma^3)) \\
&= (1 + o(1))e^{-t^2/2},
\end{align*}
\]

which converges to the characteristic function of the standard normal distribution.

It remains to be shown that \(\mu / \sigma^2 \to 1 \). By Theorem 1, the second derivative of \(F(x) \) at 1 equals

\[
F''(1) = \mathbb{E}X(X - 1) = (n - 1)(n - 2)[1 - 2(1 - p^2)^m + (1 - 2p^2 + p^3)^m],
\]

from which

\[
\begin{align*}
\sigma^2 &= (n - 1)(n - 2)[1 - 2(1 - p^2)^m + (1 - 2p^2 + p^3)^m] \\
&\quad + (n - 1)[1 - (1 - p^2)^m] - (n - 1)^2[1 - (1 - p^2)^m]^2 \\
&= (n - 1)(1 - p^2)^m + (n - 1)(n - 2)(1 - 2p^2 + p^3)^m \\
&\quad - (n - 1)^2(1 - 2p^2 + p^4)^m \\
&= (n - 1)[1 - mp^2 + O(m^2 p^4)] \\
&\quad + (n - 1)(n - 2)[1 - 2mp^2 + 2m^2 p^4 + O(mp^3) + O(m^2 p^5) + O(m^3 p^6)] \\
&\quad - (n - 1)^2[1 - 2mp^2 + 2m^2 p^4 + O(mp^4) + O(m^3 p^6)] \\
&= \mu + o(1).
\end{align*}
\]

References

