On the nonlinear stability of higher-dimensional triaxial Bianchi IX black holes

Mihalis Dafermos* Gustav Holzegel†

October 10, 2005

Abstract

In this paper, we prove that the 5-dimensional Schwarzschild-Tangherlini solution of the Einstein vacuum equations is orbitally stable (in the fully non-linear theory) with respect to vacuum perturbations of initial data preserving triaxial Bianchi-IX symmetry. More generally, we prove that 5-dimensional vacuum spacetimes developing from suitable asymptotically flat triaxial Bianchi IX symmetric initial data and containing a trapped or marginally trapped homogeneous 3-surface necessarily possess a complete null infinity I^{+}, whose past $J^{-}(I^{+})$ is bounded to the future by a regular event horizon H^{+}, whose cross-sectional volume in turn satisfies a Penrose inequality, relating it to the final Bondi mass. In particular, the results of this paper give the first examples of vacuum black holes which are not stationary exact solutions.

1 Introduction

The study of higher-dimensional gravity has attracted much attention in recent years, motivated mainly by speculations from high energy physics. The variety of possible end-states for vacuum gravitational collapse in higher dimensions appears richer [7] than in 4 dimensions and gives rise to many interesting questions. All analytical work, thus far, however, has centred on the question of the existence and uniqueness of static [8] or stationary [14, 11] solutions, or has been based on study of the linearized equations [10, 12]. While such results are suggestive as to what may occur dynamically, they do not directly address the problem of evolution and leave open the possibility that the non-linear theory admits phenomena of a completely different and unexpected nature.

The purpose of this paper is to initiate the rigorous study of vacuum black holes in higher dimensions in the fully non-linear theory. Specifically, we will study the problem of evolution for the Einstein vacuum equations

$$R_{\mu\nu} = 0,$$

for asymptotically flat initial data possessing what is known as triaxial Bianchi IX symmetry. Vacuum solutions with this symmetry have two dynamic degrees of freedom, and the Einstein equations can be written as a system of non-linear pde’s on a 2-dimensional Lorentzian quotient of 5-dimensional spacetime by an $SU(2)$ action with 3-dimensional orbits.

*University of Cambridge, Department of Pure Mathematics and Mathematical Statistics, Wilberforce Road, Cambridge CB3 0WB, United Kingdom
†University of Cambridge, Department of Applied Mathematics and Theoretical Physics, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
The system of equations thus obtained has recently been studied numerically by Bizon et. al., where analogues of critical behaviour have been discovered. Proving rigorously the kind of behaviour suggested by these numerics appears a formidable problem, beyond the scope of current techniques. Implicit in the discussion of [2], however, is the notion that there is an open set of initial data that leads to black hole formation. It is this aspect of [2] that we will formulate and rigorously prove in this paper.

The main result is

Theorem 1.1. Consider asymptotically flat smooth initial data \((S, \tilde{g}, K)\) for the vacuum Einstein equations, possessing triaxial Bianchi IX symmetry. Let \((M, g)\) denote the maximal Cauchy development, and let \(\pi : M \to Q\) denote the projection map to the 2-dimensional Lorentzian quotient \(Q\). Suppose there exists an asymptotically flat spacelike Cauchy surface \(\tilde{S} \subset Q\), and a point \(p \in \tilde{S}\) such that \(\pi^{-1}(p)\) is trapped or marginally trapped, and (at least) one of the connected components \(\tilde{S} \setminus \{p\}\) containing an asymptotically flat end is such that \(\pi^{-1}(q)\) is not outer anti-trapped or marginally antitrapped for any \(q\) in the component. Then \(Q\) contains a subset with Penrose diagram:

![Penrose Diagram](image)

Moreover, the null infinity \(\mathcal{I}^+\) corresponding to the above end is complete, and the Penrose inequality

\[r \leq \sqrt{2M_f} \]

holds on \(\mathcal{H}^+\), where \(r\) denotes the volume-radius function, and where \(M_f\) denotes the final Bondi mass.

Note that one can construct a large family of initial data such that the assumptions of the theorem are satisfied with \(\tilde{S} = \pi(S)\), for instance.

The region \(J^-(\mathcal{I}^+)\) depicted above is what is typically called a black hole exterior, the region \(Q \setminus J^-(\mathcal{I}^+)\) is called the black hole, and \(\mathcal{H}^+\) is the event horizon. Thus, the statement of the theorem can be paraphrased by

Asymptotically flat triaxial Bianchi IX-symmetric spacetimes evolving from suitable data, with an \(SU(2)\)-invariant trapped or marginally trapped 3-surface, possess a black hole with a regular event horizon (satisfying a Penrose inequality) and a complete null infinity.

Theorem 1.1 can in fact be specialized to yield

Corollary 1.1. Let \((S, \tilde{g}, K)\) denote initial data evolving to the Schwarzschild-Tangherlini metric. Then for smooth triaxial Bianchi IX-symmetric initial data \((\tilde{S}', \tilde{g}', K')\), sufficiently close to \((S, \tilde{g}, K)\) in a suitable norm, the result of the previous theorem holds for the maximal development \((M', g')\), and moreover, the black hole exterior of \((M', g')\) remains close in a suitable sense to Schwarzschild-Tangherlini.

Corollary 1.1 can be paraphrased by the statement:

Schwarzschild-Tangherlini is orbitally stable within the class of triaxial Bianchi IX-symmetric spacetimes.
The results of this paper can be thought to complement previous results of Gibbons and Hartnoll [10] suggesting linear stability\(^1\), and also to the uniqueness of Schwarzschild-Tangherlini as a static black hole vacuum spacetime [8]. Finally, we note that Theorem 1.1 gives in particular the first examples of vacuum black holes which are not static or stationary exact solutions.\(^2\)

2 Triaxial Bianchi IX

We will say that a globally hyperbolic spacetime \((\mathcal{M}, g)\) admits triaxial Bianchi IX symmetry if topologically, \(\mathcal{M} = Q \times SU(2)\), for \(Q\) a 2-dimensional manifold possibly with boundary, and where global coordinates \(u\) and \(v\) can be chosen on \(Q\) such that

\[
g = -\Omega^2 du \, dv + \frac{1}{4} r^2 \left(e^{2B} \sigma_1^2 + e^{2C} \sigma_2^2 + e^{-2(B+C)} \sigma_3^2 \right) \quad (2)
\]

where \(B\), \(C\), \(\Omega\), and \(r\) are functions \(Q \to \mathbb{R}\), and the \(\sigma_i\) are a standard basis of left invariant one-forms on \(SU(2)\), i.e. such that coordinates \((\theta, \phi, \psi)\) can be chosen on \(SU(2)\) with

\[
\begin{align*}
\sigma_1 &= \sin \theta \sin \psi d\phi + \cos \psi d\theta, \\
\sigma_2 &= \sin \theta \cos \psi d\phi - \sin \psi d\theta, \\
\sigma_3 &= \cos \theta d\phi + d\psi.
\end{align*}
\]

If there is a boundary \(\Gamma\) to \(Q\), it is to be a timelike curve, characterized by \(r = 0\).

From the above, it is clear that the metric (2) admits an \(SU(2)\) action by isometry. The boundary \(\Gamma\) corresponds to fixed points of the group action. We call it the centre. The angular part of the metric can be understood as a “squashed” 3-sphere. In the case that \(B = C\), the so-called biaxial case, the system enjoys an additional \(U(1)\) symmetry. If \(B = C = 0\) we have \(SO(4)\) symmetry and the unique solution to the Einstein vacuum equations is five-dimensional Schwarzschild, which we will here refer to as the Schwarzschild-Tangherlini solution.

From the Einstein equations (1) we derive the following equations:

\[
\partial_u (\Omega^{-2} \partial_u r) = -\frac{2r}{3\Omega^2} \left((B_u)^2 + B_u C_u + (C_u)^2 \right),
\]

\[
\partial_v (\Omega^{-2} \partial_v r) = -\frac{2r}{3\Omega^2} \left((B_v)^2 + B_v C_v + (C_v)^2 \right),
\]

\[
-2\partial_u \partial_v \log \Omega - \frac{3}{r} r_{uv} = B_v (2B_u + C_u) + C_v (2C_u + B_u),
\]

\[
\partial_u \partial_v \log \Omega + \frac{3}{r} r_{uv} + \frac{3}{r^2} r_{uv} = -\frac{\Omega^2 \rho}{2r^2} - \frac{1}{2} (B_v (2B_u + C_u) + C_v (2C_u + B_u)).
\]

From these equations we can derive a system of nonlinear wave equations for the four quantities \(r, \Omega, B,\) and \(C\):

\[
r_{uv} = -\frac{1}{3} \frac{\Omega^2 \rho}{r} - \frac{2r_{uv} r_{uv}}{r},
\]

\[
\partial_u \partial_v \log \Omega = \frac{\Omega^2 \rho}{2r^2} + \frac{3}{r^4} r_{uv} r_{uv} - \frac{1}{2} (B_v (2B_u + C_u) + C_v (2C_u + B_u)),
\]

\(^1\)See also Ishibashi and Kodama [12].

\(^2\)Such solutions are yet to be constructed in 3+1-dimensions, as, in view of Birkhoff’s theorem, it is impossible to reduce the problem to a 1+1-dimensional system of pde’s.
\[
B_{uv} = \frac{3 r_u}{2 r} B_{v} - \frac{3 r_v}{2 r} B_{u} + \frac{\Omega^2}{3 r^2} \left(e^{2B+2C} + e^{-4B-4C} - 2 e^{-2B} - 2 e^{4B} + e^{-2C} + e^{4C} \right),
\]

\[
C_{uv} = \frac{3 r_u}{2 r} C_{v} - \frac{3 r_v}{2 r} C_{u} + \frac{\Omega^2}{3 r^2} \left(e^{2B+2C} + e^{-4B-4C} - 2 e^{-2B} - 2 e^{4B} + e^{-2C} + e^{4B} \right).
\]

Note that the last two equations become identical in the biaxial case. Equations (4) and (5) are to be thought of as constraints which are preserved by the evolution of (8)-(11).

3 The initial value problem

Consider an asymptotically flat triaxial Bianchi IX vacuum initial data set\(^3\) \((S, \bar{g}, K)\). Let \((\mathcal{M}, g)\) denote the maximal development of \((S, \bar{g}, K)\). By standard arguments, it follows that \((\mathcal{M}, g)\) is triaxial Bianchi IX symmetric in the sense of the previous section. Moreover, the range of the null coordinates can be chosen to be bounded, defining i.e. a conformal embedding of \(\mathcal{Q}\) into a bounded subset of \(\mathbb{R}^{1+1}\). The two possibilities for the global structure of the image of such an embedding are depicted below:

\begin{figure}
\centering
\includegraphics[width=0.5\textwidth]{diagram.png}
\caption{Global structure of the image of an asymptotically flat embedding.}
\end{figure}

depending on the number of asymptotically flat ends. \(S\) above denotes \(\pi(S)\). In what follows, the notations \(J^+\), closure, etc., will refer to the topology and causal structure of \(\mathbb{R}^{1+1}\). By the definition of asymptotic flatness, it follows that \(r\) tends monotonically to infinity along \(S\), sufficiently close to the points labeled \(i_0\). Moreover, \(\mathcal{Q} \cap J^+(S)\) is foliated by constant-\(v\) curves emanating from \(S\), and constant-\(u\) curves emanating from \(S \cup \Gamma\).

4 Local existence and extension

We wish to understand those TIPs in \(\mathcal{Q}\) which do not “emanate” from the centre \(\Gamma\). For this, the following local existence theorem in null coordinates shall suffice for our purposes.

\(^3\)We leave to the reader the correct formulation of this notion.
Proposition 4.1. Let Ω, r, B, and C be functions defined on $X = [0, d] \times \{0\} \cup \{0\} \times [0, d]$. Let $k \geq 0$, and assume $r > 0$ is $C^{k+2}(u)$ on $[0, d] \times \{0\}$ and $C^{k+2}(v)$ on $\{0\} \times [0, d]$, assume that Ω, B and C are $C^{k+1}(u)$ on $[0, d] \times \{0\}$ and $C^{k+1}(v)$ on $\{0\} \times [0, d]$. Suppose that equations (4), (5) hold initially on $[0, d] \times \{0\}$ and $\{0\} \times [0, d]$, respectively. Let $|f|_{u,v}$ denote the $C^n(u)$ norm of f on $[0, d] \times \{0\}$, $|f|_{u,v}$ the $C^n(v)$ norm of f on $\{0\} \times [0, d]$, etc. Define

$$N = \sup\{|\Omega|, |\Omega^{-1}|, |r_2|, |r_3|, |r_4|, |B_{1,u}|, |B_{1,v}|, |C_{1,u}|, |C_{1,v}|\}.$$

Then there exists a δ, depending only on N, and a C^{k+2} function (unique among C^2 functions) r and C^{k+1} functions (unique among C^1 functions) Ω, B, and C, satisfying equations (4)–(11) in $[0, \delta^*] \times [0, \delta^*]$, where $\delta^* = \min\{d, \delta\}$, such that the restriction of these functions to $[0, d] \times \{0\} \cup \{0\} \times [0, d]$ is as prescribed.

Proof. The proof is by standard methods and is omitted. \hfill \square

From the above Proposition and the maximality of the Cauchy development, the following extension principle follows. Given a subset $Y \subset \Omega \setminus \Gamma$, define

$$N(Y) = \sup\{|\Omega|, |\Omega^{-1}|, |r_2|, |r_3|, |r_4|, |B_{1,u}|, |C_{1,v}|\},$$

where, for f defined on Ω^+, $|f|_Y$ denotes the restriction of the C^k norm to Y.

Proposition 4.2. Let $p \in \Omega \setminus \Gamma$, and $q \in \Omega \cap J^{-}(p)$ such that $J^{-}(p) \cap J^{+}(q) \setminus \{p\} \subset \bar{Q}$, and $N(J^{-}(p) \cap J^{+}(q) \setminus \{p\}) < \infty$. Then $p \in \bar{Q}$.

5 The Hawking mass

A remarkable feature of the system of equations (8)–(11) is the existence of energy estimates for B and C. For this, we first define the so-called Hawking mass

$$m = \frac{r^2}{2} \left(1 + \frac{4r^2}{\Omega^2}\right).$$

(12)

We compute the identities:

$$\partial_u m = -\frac{4r^3}{3\Omega^2} r_u \left[(B_{,u})^2 + B_{,v}C_{,u} + (C_{,u})^2\right] + r \cdot r_u \left[1 - \frac{2}{3} \rho\right],$$

$$\partial_v m = -\frac{4r^3}{3\Omega^2} r_u \left[(B_{,v})^2 + B_{,v}C_{,v} + (C_{,v})^2\right] + r \cdot r_v \left[1 - \frac{2}{3} \rho\right],$$

(13, 14)

where ρ denotes the scalar curvature of the group orbit:

$$\rho = e^{2B+4C} + e^{-2B} + e^{-2C} - \frac{1}{2} e^{-(4B+4C)} - \frac{1}{2} e^{4B} - \frac{1}{2} e^{4C}.$$

(15)

Note that ρ is bounded by above:

$$\rho \leq \frac{3}{2}.$$

(16)

(A straightforward way to show this is to set $x = e^{2B}$, $y = e^{2C}$ and to study the function $\rho(x, y)$. First one shows that $\rho(x, y) < \frac{3}{2}$ in the region

$$R = \left\{ x \leq \frac{1}{10}, y \leq \frac{1}{10} \right\} \cup \left\{ x \geq 10, y \geq 10 \right\}.$$

(17)

Next one determines the critical points of $\rho(x, y)$. It turns out that there is only one extremum at $x = 1, y = 1$, which is shown to be a maximum. This proves $\rho(x, y) \leq \frac{3}{2}$ with equality only for the round sphere, $B = C = 0$.)

By (16), we now see that all terms in square brackets are manifestly non-negative. Thus, if, say $\partial_u r < 0$ and $\partial_v r \geq 0$, we have

$$\partial_u m \leq 0, \partial_v m \geq 0.$$

(18)
6 The regions \mathcal{R}, \mathcal{T}, and \mathcal{A}

Let us define the regular region

$$\mathcal{R} = \{ p \in \mathcal{Q} \text{ such that } \partial_v r > 0, \partial_r r < 0 \} \quad (19)$$

the trapped region

$$\mathcal{T} = \{ p \in \mathcal{Q} \text{ such that } \partial_v r < 0, \partial_r r < 0 \} \quad (20)$$

and the marginally trapped region

$$\mathcal{A} = \{ p \in \mathcal{Q} \text{ such that } \partial_v r = 0, \partial_r r < 0 \}. \quad (21)$$

The reader is warned that the term regular is meant with reference to the asymptotically flat end in the direction of which the vector ∂_v points. By the results of the previous section, the inequalities (18) hold in $\mathcal{R} \cup \mathcal{A}$. In the next section, we will show how this leads to a stronger extension theorem than Proposition 4.2.

7 Extension in the non-trapped region

The monotonicity (18) indicates that our system (4)–(11) shares a formal similarity with spherically symmetric $3 + 1$-dimensional Einstein-matter systems, for suitable matter fields satisfying the dominant energy condition (See [4, 13]). In particular, one might conjecture that an extension principle analogous to the one formulated in [4] holds in the non-trapped region. This is what we show in this section.

We have

Proposition 7.1. Let $p \in \overline{\mathcal{R}} \setminus \mathcal{T}$, and $q \in \mathcal{R} \cup \mathcal{A} \cap I^- (p)$ such that $J^- (p) \cap J^+ (q) \setminus \{ p \} \subset \mathcal{R} \cup \mathcal{A}$. Then $p \in \mathcal{R} \cup \mathcal{A}$.

Proof. The proof adapts techniques introduced in [5]. Let us introduce the following notation:

$$\nu = \partial_v r, \quad (22)$$
$$\lambda = \partial_r r, \quad (23)$$
$$\kappa = -\frac{1}{4} \Omega^2 \nu, \quad (24)$$
$$\mu = \frac{2m}{r^2}, \quad (25)$$
$$\xi_B = r^2 \partial_v B, \quad (26)$$
$$\xi_C = r^2 \partial_v C, \quad (27)$$
$$\theta_B = r^2 \partial_v B, \quad (28)$$
$$\theta_C = r^2 \partial_v C. \quad (29)$$

Note that $\kappa (1 - \mu) = \lambda$.

Let X denote $(J^+ (q) \setminus I^+ (q)) \cap \mathcal{Q}$. Setting $p = (u_1, v_1)$, $q = (u_2, v_2)$, we have $X = \{ u_i \} \times [v_i, v_1] \cup [u_i, u_1] \times \{ v_i \}$. Since X is compact, the quantities

$$r, \kappa, \lambda, \nu, m, B, C, \xi_B, \xi_C, \theta_B, \theta_C, \partial_\nu \Omega, \partial_v \lambda, \partial_v \nu \quad (30)$$

are bounded.
are uniformly bounded above and below on X:

$$0 < r_0 \leq r \leq R,$$

$$0 \leq \lambda \leq \Lambda,$$

$$0 > \nu_0 \geq \nu \geq N,$$

$$|B| \leq P_B,$$

$$|C| \leq P_C,$$

$$|\theta_B| \leq T_B,$$

$$|\theta_C| \leq T_C,$$

$$|\zeta_B| \leq Z_B,$$

$$|\zeta_C| \leq Z_C,$$

$$|m| \leq M,$$

$$0 < \kappa_0 \leq \kappa \leq K,$$

$$|\partial_v \Omega| \leq H,$$

$$|\partial_\nu \Omega| \leq H,$$

$$|\partial_\nu \nu| \leq H,$$

$$|\partial_\nu \lambda| \leq H.$$ \hfill (31)

By Proposition 4.2, in view also of the fact that $\Omega^2 = -4\kappa\nu$, to prove Proposition 7.1, it suffices to show that the quantities (30) are uniformly bounded everywhere in $[u, u_1] \times [v, v_1] \setminus \{(u_1, v_1)\}$, with bounds similar to (31).

We first derive a bound for r. Integrating ν along u, and λ along v, we obtain from (31), in view of the signs of ν, λ in $\mathcal{R} \cup \mathcal{A}$, that

$$0 < r_0 \leq r \leq R$$ \hfill (32)

in $[u, u_1] \times [v, v_1] \setminus \{(u_1, v_1)\}$. A similar argument can be given for the mass: Integrating (13) along u yields

$$m(u^*, v^*) - m(u_*, v^*) \leq 0$$ \hfill (33)

and integrating (14) along v yields

$$m(u^*, v^*) - m(u^*, v_*) \geq 0.$$ \hfill (34)

We conclude the bound

$$-M \leq m \leq M$$ \hfill (35)

on $[u_*, u_1] \times [v_*, v_1] \setminus \{(u_1, v_1)\}$.

A bound on κ can be derived as follows: Note that $\kappa > 0$ by definition, in view of the $\nu < 0$. On the other hand, we compute from (4)

$$\kappa_u = \frac{1}{6\nu^2} \Omega^2 (B_u^2 + B_u C_u + (C_u)^2) \leq 0,$$ \hfill (36)

Thus, integrating in u from X, in view of (31), we obtain

$$0 < \kappa \leq K$$ \hfill (37)

in $[u_*, u_1] \times [v_*, v_1] \setminus \{(u_1, v_1)\}$.

Next we bound the quantity ν using the evolution equation (8), written:

$$\partial_\nu \nu = r_{,uv} = -\frac{1}{3} \frac{\Omega^2 \rho}{r} - \frac{2 \nu \lambda}{r} = \nu \left(\frac{4 \kappa \rho}{3r} - \frac{2 \lambda}{r} \right).$$ \hfill (38)
Integrating this equation in \(v \) we get
\[
\nu(u^*, v^*) = \nu(u^*, v_*) \exp \left(\int_{v_*}^{v^*} \left(\frac{4\kappa \rho}{3r} - \frac{2\lambda}{r} \right) (u^*, v) dv \right), \tag{39}
\]

Since \(\rho \leq \frac{3}{2} \), \(\lambda \geq 0 \), we obtain the upper bound
\[
-\nu \leq |N| \cdot \exp \left(\frac{2eK}{r_0} \right) \equiv N'. \tag{40}
\]

From the above and (37) it follows that the quantity \(\Omega^2 = -4\kappa \nu \) is also bounded from above.

To estimate \(B \) and \(C \), we revisit the equations (13) and (14), in view of (35), to infer a-priori integral estimates for derivatives of these quantities. Equation (14) gives
\[
\int_{v_*}^{v^*} \left(-\frac{4}{3} \frac{r^3}{\Omega^2} ((B,v)^2 + B_v C_v + (C,v)^2) + \lambda r \left(1 - \frac{2}{3}\rho \right) \right) (u^*, v) \, dv \leq 2M \tag{41}
\]
and therefore, since
\[
B_v^2 + B_v C_v + C_v^2 \geq \frac{1}{2} B_v^2 + \frac{1}{2} C_v^2 \geq 0,
\]
we have
\[
\int_{v_*}^{v^*} \frac{1}{3} \left(\frac{r^3}{\kappa} (B,v)^2 \right) \frac{1}{\kappa} (\theta_B)^2 (u^*, v) \, dv \leq 4M. \tag{42}
\]

Obviously, the same inequality holds with \(B \) replaced by \(C \). In the same way, integrating equation (13) along \(u \) using the mass-bound (35) leads to the estimate
\[
\int_{u_*}^{u^*} \frac{1}{3} \left(1 - \frac{\mu}{\nu} \right) \left(\frac{\zeta u}{\nu} \right)^2 (-\nu) (u, v^*) \, du \leq 4M. \tag{43}
\]

Again, the same inequality holds with \(B \) replaced by \(C \).

We may now integrate the equation \(B_v = r^{-\frac{5}{2}} \theta_B \) in \(v \) to obtain
\[
|B(u^*, v^*)| \leq |B(u^*, v_*)| + \left| \int_{v_*}^{v^*} \frac{\theta_B}{r^2} (u^*, v) \, dv \right| \leq P_B + \sqrt{\int \frac{\theta_B^2}{\kappa} dv} \int \frac{\kappa}{r^3} dv \leq P_B + \sqrt{12 M} \sqrt{\frac{K\epsilon}{r_0^3}} \equiv P_B', \tag{44}
\]
where we used the Schwarz inequality in the step from the first to the second line and (42) for the last step. In a completely analogous fashion—integrating \(C_v = r^{-\frac{5}{2}} \theta_C \) in \(v \)—we obtain the same bound for \(C \). Having bounded \(B \) and \(C \), it follows from (15) that \(\rho \) is also bounded in \([u_*, u_1] \times [v_*, v_1] \setminus \{(u_1, v_1)\} \). This enables us to bound \(\lambda \). Rewriting the evolution equation (8) for \(r_{uv} \) in terms of quantities we already control we obtain
\[
\partial_u \lambda = r_{uv} = \nu \left(\frac{4\kappa \rho}{3r} - \frac{2\lambda}{r} \left(1 - \frac{2m}{r^4} \right) \right) \tag{45}
\]
which we can integrate along \(u \). Because we already control all the quantities appearing in the integrand we immediately obtain a bound for \(\lambda \) in \([u_*, u_1] \times [v_*, v_1] \setminus \{(u_1, v_1)\} \):
\[
\lambda \leq L. \tag{46}
\]
The determination of a suitable constant L is left to the reader.

We turn to bound $|\nu|$ and κ from below, away from zero. In view of the bound on $|\rho|$, we may derive immediately from (39) a bound

$$\nu \leq \bar{\nu}_0 < 0.$$

For κ, we integrate (36), rewritten as

$$\partial_u \kappa = \kappa \left(\frac{2}{3} r \nu^{-1} (B_u^2 + B_C C_u + C_u^2) \right)$$

(47)

to obtain

$$\kappa(u, v) = \kappa(u_c, v) \exp \int_{u_c}^{u} \frac{2}{3} r \nu^{-1} (B_u^2 + B_C C_u + C_u^2) du$$

$$\geq \bar{\kappa}_0,$$

where, for the last inequality, we use (31) and the bounds proved above, in particular, the u-analog of (41).

Finally, we note at this stage that from (8), it follows immediately r_{uv} is bounded in $[u_c, u] \times [v_c, v] \setminus \{(u_1, v_1)\}$.

We turn now to bound the derivatives of B and C. First let us consider $\partial_u B, \partial_u C$. Differentiating $\theta_B = r^\frac{5}{2} \partial_u B$ in u and using the evolution equation (10) we get

$$\partial_u \theta_B = -\frac{3}{2} \frac{\lambda \zeta_B}{r} + \frac{\Omega^2}{3 \sqrt{r}} \left(e^{2B+2C} + e^{-4B-4C} - 2e^{-2B} - 2e^{4B} + e^{-2C} + e^{4C} \right),$$

(48)

which can be integrated in u to give

$$|\theta_B(u^*, v^*)| \leq |\theta_B(u_c, v_c)| + \frac{3}{2} \int_{u_c}^{u^*} \frac{\lambda \zeta_B}{r} (u, v^*) \, du + \int_{u_c}^{u^*} \frac{\Omega^2}{3 \sqrt{r}} \left(e^{2B+2C} + e^{-4B-4C} - 2e^{-2B} - 2e^{4B} + e^{-2C} + e^{4C} \right) (u, v^*) \, du.$$

(49)

The term in the last line is bounded because we control all quantities in the integrand. We estimate it say by the constant F. For the second term we use the Schwarz inequality and the a-priori bound (43):

$$|\theta_B(u^*, v^*)| \leq T_B + F + \frac{3}{2} \int_{u_c}^{u^*} \frac{\nu \kappa (1 - \mu) \zeta_B}{r \nu} (u, v^*) \, du$$

$$\leq T_B + F + \frac{3}{2} \sqrt{\int_{u_c}^{u^*} \frac{\left(\frac{\zeta_B}{\nu} \right)^2}{(-\nu)(1 - \mu)} (u, v^*) \, du \int_{u_c}^{u^*} \frac{(-\nu) \kappa^2 (1 - \mu)}{r^2} (u, v^*) \, du}$$

$$\leq T_B + F + \frac{3}{2} \sqrt{12 M \cdot K \cdot \sqrt{r_0^{-1} + Mr_0^{-3}} \equiv V.}$$

(50)

Hence we bounded θ_B and therefore $\partial_u B$. The bound for $\partial_u C$ is obtained completely analogously.

Next we turn to $\partial_u B, \partial_u C$. Differentiating $\zeta_B = r^\frac{5}{2} \partial_u B$ with respect to u using the evolution equation (10), we obtain

$$\partial_u \zeta_B = -\frac{3}{2} \frac{\nu \theta_B}{r} + \frac{\Omega^2}{3 \sqrt{r}} \left(e^{2B+2C} + e^{-4B-4C} - 2e^{-2B} - 2e^{4B} + e^{-2C} + e^{4C} \right).$$

(51)
Integration in v now yields a bound for ζ_B since all the quantities on the right have already been shown to be bounded. (Alternatively we could use the Schwarz inequality and the a-priori bound (42).) The bound for ζ_C and therefore C_u is obtained in a completely analogous manner. Having bounded B, C and their first derivatives, equation (10) yields that B_{uv} is also bounded.

Bounds for Ω_u and Ω_v follow by integrating (9) in v and u respectively. Finally, bounds for r_{uu} and r_{vv} follow from (4) respectively (5) and the previous bounds.

As remarked at the beginning, the proof now follows by applying Proposition 4.2.

\[\square \]

8 Null infinity

Let \tilde{S} be as in the statement of Theorem 1.1. Without loss of generality, let the asymptotically flat end in question be such that ∂_ν points “outwards”. We define a set $\mathcal{I}^+ \subset (\mathcal{Q} \setminus \mathcal{Q}) \cap J^+(\tilde{S})$, as follows: Let

\[\mathcal{U} = \left\{ u : \sup_{v : [u, v] \in \mathcal{Q}^+} r(u, v) = \infty \right\}. \]

(52)

For each $u \in \mathcal{U}$, there is a unique $v^*(u)$ such that

\[(u, v^*(u)) \in (\overline{\mathcal{Q}} \setminus \mathcal{Q}) \cap J^+(\tilde{S}). \]

(53)

Let the end in question have limit point on S given by $i_0 = (\tilde{u}, \tilde{V})$. Then the null-infinity corresponding to i_0 is defined as the set

\[\mathcal{I}^+ = \bigcup_{u \in \mathcal{U}} (u, v^*(u)). \]

(54)

Standard arguments show that \mathcal{I}^+ is non-empty for the data considered here. It is straightforward to show, adapting [4], that \mathcal{I}^+ is then a connected ingoing null-ray with past-limit point i_0. Denote the future limit point of \mathcal{I}^+ by i^+. A priori, it could be that $i^+ \in \mathcal{I}^+$.

Adapting [4], one shows from (18) that the Bondi mass

\[M(u) = \lim_{v \to V} M(u, v) \]

is a finite (not necessarily continuous) function on \mathcal{I}^+, non-increasing in u. We define $M_f = \inf M(u)$ to be the final Bondi mass.

9 Proof of Theorem 1.1

This proof is an adaptation of methods introduced in [4].

As above, let \tilde{S} be as in the statement of Theorem 1.1, let ∂_ν be the outward direction, and consider the set

\[\mathcal{D} = J^+(\tilde{S}) \cap J^-(\mathcal{I}^+) \cap \mathcal{Q}. \]

This set is non-empty. On the other hand, by the Raychaudhuri equations (4)–(5), and the assumption that $\partial_\nu r < 0$ along \tilde{S}, it follows that $\partial_\nu r < 0$ along future-directed constant-v curves in \mathcal{Q} emanating from $\tilde{S} \cap \{ v \geq v(p) \}$, and

\[\mathcal{D} \subset \mathcal{R}. \]
Since by assumption \(p \in \mathcal{T} \cup \mathcal{A} \), it follows that \(p \notin \mathcal{D} \), and thus \(\mathcal{D} \) has a non-empty future boundary in \(\mathcal{Q} \). Denote this boundary \(\mathcal{H}^+ \). Note also that \(m \geq r^2(p) > 0 \) in \(\mathcal{D} \), and thus in particular, \(M_f > 0 \).

Proposition 7.1 shows immediately that \(\mathcal{H}^+ \) cannot terminate before reaching \(i^+ \), i.e., the Penrose diagram is as:

\[
\mathcal{H}^+ \\
i^+ \\
I^+
\]

or

\[
\mathcal{H}^+ \\
i^+ \\
I^+
\]

We will first show that the latter is the case, i.e. \(i^+ \notin I^+ \), in fact, that the Penrose inequality

\[
r^2 \leq 2M_f,
\]

holds on the event horizon \(\mathcal{H}^+ \).

To show (55) on \(\mathcal{H}^+ \), one assumes the contrary, i.e. the existence of a point \((\hat{U}, \hat{V})\) with \(r^2(\hat{U}, \hat{V}) = R^2 > 2M_f \) on the horizon, and as in [4], one infers (using monotonicity properties of \(r \) and \(m \), together with Proposition 7.1) the existence of a neighbourhood of the horizon which is part of the regular region:

\[
\mathcal{N} := [u_0, u''] \times [\hat{V}, V] \subset \mathcal{R}
\]

with \(u_0 < \hat{U} < u'' \). In particular this neighbourhood can be chosen such that there exists an \(R' < R \) with the property that in \([\hat{U}, u''] \times [\hat{V}, V] \subset \mathcal{R}\)

\[
r \geq R' \quad \text{and} \quad 1 - \frac{2m}{r^2} \geq 1 - \frac{2M}{(R')^2}
\]

holds. The last step is to show that for any \(u^* \in [u_0, u''] \), \(\lim_{v \to \infty} r(u^*, v^*) = \infty \), i.e. \(\mathcal{H}^+ \) cannot be the event horizon, as defined, a contradiction.

To show this last step, having shown (57), we proceed as follows: Integrating (13) along \(u \) from \(u_0 \) to a point \(u^* < u'' \) we obtain the estimate

\[
\sup_{\tau \geq \hat{V}} \int_{u_0}^{u^*} \frac{4r^3}{3\Omega^2} \lambda \left((B_{,u})^2 + B_{,u}C_{,u} + (C_{,u})^2 \right) (\tau, \hat{V}) d\tau \leq M
\]

which can be written as

\[
\sup_{\tau \geq \hat{V}} \int_{u_0}^{u^*} \frac{r^3}{3(-\nu)}(1 - \mu) \left((B_{,u})^2 + B_{,u}C_{,u} + (C_{,u})^2 \right) (\tau, \hat{V}) d\tau \leq M.
\]

Taking (57) into account we can derive the estimate

\[
\sup_{\tau \geq \hat{V}} \int_{u_0}^{u^*} \frac{1}{3} \frac{r \left((B_{,u})^2 + B_{,u}C_{,u} + (C_{,u})^2 \right)}{\nu} \hat{V} d\tau \hat{V} \geq \frac{-M}{(R')^2 - 2M}
\]

valid for any \(u^* \in [u_0, u''] \). Integrating (47), we obtain

\[
\kappa(u^*, v^*) \geq \kappa(u_0, v^*) \cdot \exp \left(\frac{-2M}{(R')^2 - 2M} \right)
\]
and therefore

\[\lambda(u^*, v^*) \geq \left(1 - \frac{2M}{R^2} \right) \exp \left(\frac{-2M}{(R^2) - 2M} \right) \lambda(u_0, v^*). \] (62)

Integrating (62) in \(v \), we see that \(\lim_{v \to V} r(u^*, v^*) \to \infty \), since \(\lim_{v \to V} r(u_0, v^*) \to \infty \) on the right by the definition of \(I^+ \). We conclude \((u^*, V) \in I^+ \). Therefore, \(H^+ \) is not the event horizon and we have arrived at the desired contradiction.

The only thing left in the proof of Theorem 1.1 is to show the the completeness of \(I^+ \). (Completeness here refers to an adaptation in [4] of the concept defined in [3].) We have to show that the suitable normalized affine length, as measured from a fixed outgoing null curve \(u = u_0 \), of the ingoing null-curves \(v = \text{const} \) in \(J^-(I^+) \) tends to infinity as \(v \to V \). More precisely, we define the vector field

\[X(u, v) = \frac{\Omega^2(u_0, v)}{\Omega^2(u, v)} \frac{\partial}{\partial u} \] (63)

on \(J^-(I^+) \cap Q^+ \). Note that this vector field is parallel along all ingoing null-rays and along the curve \(u = u_0 \). We will show

\[\lim_{v \to V} \int_{u_0}^u (X(u, v) \cdot u)^{-1} du = \infty. \] (64)

From equation (4) we can derive

\[\Omega^2(u, v) \Omega^{-2}(u_0, v) = \nu(u, v) \nu^{-1}(u_0, v) \cdot \exp \left(\int u \frac{2r}{3\nu} ((B_u)^2 + B_u C_u + (C_u)^2) (\mathfrak{m}, v) d\mathfrak{m} \right). \] (65)

Let \(M \) be the Bondi-mass at \(u_0 \). We choose an \(R \) such that \(R^2 > 2M \geq 2M_f \) and consider the curve \(\{ r = R \} \cap J^-(I^+) \). For sufficiently large \(v_0 < V \), all ingoing null-curves with \(v > v_0 \) intersect \(\{ r = R \} \cap J^-(I^+) \) at a unique point \((u^*(v), v) \), depending on \(v \).

Analogously to (60) we derive the bound

\[\int_{u_0}^u \frac{2r}{3\nu} ((B_u)^2 + B_u C_u + (C_u)^2) (\mathfrak{m}, v) d\mathfrak{m} \geq \frac{-2M}{R^2 - 2M}, \] (66)

which we use to estimate

\[\int_{u_0}^u (X(u, v) \cdot u)^{-1} du \geq \int_{u_0}^{u^*(v)} (X(u, v) \cdot u)^{-1} du \]

\[= \nu^{-1}(u_0, v) \int_{u_0}^{u^*(v)} \exp \left(\int_{u_0}^{u} \frac{2r}{3\nu} ((B_u)^2 + B_u C_u + (C_u)^2) (\mathfrak{m}, v) d\mathfrak{m} \right) \nu du \]

\[\geq \frac{r(u_0, v) - R}{(-\nu)(u_0, v)} \exp \left(\frac{-2M}{R^2 - 2M} \right). \] (67)

Since \(r(u_0, v) \to \infty \) as \(v \to \infty \) we only need to show that \((-\nu)(u_0, v) \) is uniformly bounded in \(v \). The quantity

\[\frac{\nu}{1 - \mu} \] (68)

satisfies

\[\partial_v \frac{\nu}{1 - \mu} = \frac{\nu}{1 - \mu} \frac{2r}{3\lambda} ((B_v)^2 + B_v C_v + (C_v)^2) \] (69)
which integrates to

$$\exp \left(\int_{v_0}^v \frac{2\tau}{3 \lambda} ((B,\nu)^2 + B_e C_e + (C_e)^2) (u_0, v) d\nu \right) \frac{-\nu}{1 - \mu} (u_0, v) = (70)$$

We can choose v_0 (so large) such that

$$1 - \frac{2M}{(r_0(u_0, v_0))^2} > 0. \quad (71)$$

Set $R' = r(u_0, v_0)$. Analogously to (60) and (66) we derive the bound

$$\int_{v_0}^v \frac{2\tau}{3 \lambda} ((B,\nu)^2 + B_e C_e + (C_e)^2) (u_0, v) d\nu \leq \frac{2M}{(R')^2 - 2M} \quad (72)$$

which enables us to obtain from (70) the estimate

$$-\nu(u_0, v) \leq \left(1 - \frac{2M}{(R')^2} \right)^{-1} \exp \left(\frac{2M}{(R')^2 - 2M} \right) \quad (73)$$

for $v \geq v_0$, which in turn shows uniform boundedness of $(-\nu)(u_0, v)$ in v.

10 Proof of Corollary 1.1

Let S denote the projection of an arbitrary spherically symmetric Cauchy surface in Schwarzschild, and let \bar{S} denote the projection of a second asymptotically flat spherically symmetric Cauchy surface, with the property that \bar{S} contains no spherically symmetric antitrapped or marginally antitrapped surfaces. (Such Cauchy surfaces clearly exist, and they moreover necessarily contain spherically symmetric trapped 3-surfaces.) By Cauchy stability, sufficiently small triaxial Bianchi IX perturbations of Schwarzschild data on $\pi^{-1}(S)$ yield solutions (\mathcal{M}', g') possessing a triaxial Bianchi IX symmetric Cauchy surface \bar{S}' with geometry arbitrarily close to that of \bar{S}, in particular, containing a triaxial Bianchi IX symmetric trapped 3-surface and no antitrapped or marginally antitrapped surfaces. It follows that the perturbed solutions possess a Cauchy surface \bar{S}' with the properties of Theorem 1.1.

Finally, we note that the Hawking mass on \bar{S} is arbitrarily close to the constant value M it takes on Schwarzschild, i.e. we have $M - \epsilon \leq m \leq M + \epsilon$ on \bar{S}. By the monotonicity (18), it follows that this bound is preserved in $J^+(\bar{S}) \cap J^-(\bar{I}^+)$. It is this statement that we mean by “orbital stability”.

11 Final comments

Besides orbital stability, one is interested in what could be called asymptotic stability of the Schwarzschild family, i.e. the statement that perturbations of a Schwarzschild initial data set asymptotically approach another Schwarzschild solution. An even more ambitious problem would be to understand the rates of approach, as in [6]. These problems remain open.

Another interesting and partly related question is to understand the structure of the outermost apparent horizon. In analogy to [4], we may define this as the set

$$\mathcal{A}' = \{(u, v) \in \mathcal{A} : (u'^*, v) \in \mathcal{R} \text{ for all } u'^* < u \text{ and } \exists u' : (u', v) \in J^-((\mathcal{I}^+)) \cap \mathcal{R} \cap J^+(\bar{S})\} \quad (74)$$

Here, outermost is with respect to the double null foliation.
As in [4], A' is now easily shown to be an achronal curve intersecting all ingoing null curves for $v \geq v_0$ for sufficiently large v_0. In addition, one shows easily that on A', the Penrose inequality (55) holds. There are many other issues, however, which are not settled: Is it a connected set in a neighborhood of i^+? Is it “generically” a strictly spacelike curve in a neighborhood of i^+? Does it terminate at i^+ in the topology of the Penrose diagram? For more on these questions, the reader can consult the literature on so-called dynamical horizons, in particular [1].

12 Acknowledgments

The problem addressed in this paper was posed in a talk [9] of Gary Gibbons at the Newton Institute of the University of Cambridge. G.H. thanks Gary Gibbons for helpful discussions. M.D. thanks Piotr Bizon and Bernd Schmidt.

References